
Logical Functions on the Real Numbers
and Group Structure of the Irrationals

Paris S. Miles-Brenden

December 27, 2016

1



Logical Functions on the Real Numbers

Table of Contents

Table of Contents

Chapter 0.) Introduction

Chapter 1.) First Properties
Chapter 2.) Logical Ruleset

Chapter 3.) Measures
Chapter 4.) Main Operations

Chapter 5.) Continuity and Symmetry
Chapter 6.) Number Rings

Chapter 7.) Polynumerous Types
Chapter 8.) Logical Groups and Functions

Chapter 9.) Series
Chapter 10.) Logical System

Chapter 11.) Group Structure of the Irrationals
Chapter 12.) Geometry of the Irrational Numbers

Chapter 13.) Logic Revisited
Chapter 14.) The Circle as a Logical Fractal

Chapter 15.) Conclusion

2



Logical Functions on the Real Numbers

Introduction

This paper is about a system of logic, the foundations of which are continuous and
discrete. As well, logical sets which are derivational of logical rings, functions,
and fractals. These logical functions are sequential sets, evaluated in a recursive
or dynamic fashion. We initially begin with some notation for these functions,
explain how we arrived at these functionalizations, and then go on to describe
their properties as well as derive some properties of their interrelationships. One
end goal of this paper is to describe the properties of logical functions, ones which
are capable of logically representing the geometric object the circle, as a set of
functions convergent to the properties needed to define this object from base
logical rules. Is the circle an identity in logic as it is very much in geometry?

We use a logical set of True and False, and adjoin Open and Closed, with
appropriate logical rules. These, open and closed, as states, inherit a group
property from that of the point. As well we can justify a squeeze theorem of logic
at every logical state since we can define a continuous logical function. We can
also prove many other properties of continuous logical functions.

Given the number of number bases these objects have their behavior is
similar to that of rings. We construct these rings from number and set arguments,
and find the number of ways we can obtain rings with these properties. These
can be derived in one common way yet exist in profundity. We will find in this
a natural isomorphism between systems of logic inclusive of open and closed and
the extension of the rationals to the reals. This set theoretic approach offers
other interesting results, because we can form conclusions such as forming an
equivalence class of these rings with a free rotational symmetry.

This paper covers many of these topics, even delving into the number theo-
retic properties of these rings, strings, circles, or types as I will call them through-
out. We will also touch on the ideas of these as fractalline numbers, and fractals,
finding self similar sequences, as well as a fractal that describes the properties of
the geometric object the circle.

A goal of this paper is to understand the connection between the operator’s
flexibility in transforming stings and the group defined by the logical operators.
We would like the properties of the ”operations” to be determined by the algebric
group of these operators. Here, it seems that open and closed can alter the
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commutativity and associativity of a group if admitting these does so when true
and false do not alone. With these operators we can find new and interesting
results in number theory. Our construction accomplishes part of this, and the
operator sequences are left with properties they get from the algebraic group of
the logical tables we describe.

This connection, the number to algebraic or geometric, and the implications
of this for understanding complexity in computation are interesting. For instance,
this touches on Godel’s theorem and Turing’s work, as well as possesses a drive
towards solution of recurrent, self similar, and other similar problems, that we
believe have importance. An interesting question to ask yourself while reading
is: ”Is there an infinitely long consistent irregular and self-similar rule based
sequence?”

Open statements are those statements for which there does not exist a logi-
cally definite underpinning until future declarations are understood, and are not
defined as true or false, until all absolute truths or falsities are collected as per-
tains to them. Openness of a statement is therefore defined as a statement about
which the truth has yet to be determined. This more expansive interpretation of
open is ’undetermined’.

Closed statements in their absolute form are those statements that are not
predetermined as either true or false, but for which further there is no openness
and there is no declaration as to true or false. These statements are those that
indicate they are neither openly true nor false and are essentially limited in
application; in that these are closed to reaching a truth state. In this theory
there exist bidirectionally open statements.

After developing a system of logic, we devise a one dimensional self refer-
ential system of logic by rules of inclusion, exclusion, and equality among sets,
that is capable of producing simple results such as factorization and prime num-
ber generation. We look at those which possesses a simplistic number theoretic
interpretation. Irrationals correspond to infinitely long self similar but irregular
sequences, and are dense in the set of rings. However, we look at other questions,
such as: Are there any consistent infinitely long sequences on R, the real num-
bers, such that linear operations (natural number series evaluation) would never
saturate the list of answered questions? It may be possible to encode nonlinear
recursive processes with these strings.
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We describe the geometry of the irrational numbers, and their group prop-
erties are similar to that of triangles or hypertriangulations. We examine in
particular the transformation of a radical inverse. It is found that the rules of
multiplication are somewhat isomorphic to division when we take the rationals
to be the identity in the real number line interval [0, 1). This construction is then
a set a reals mirrored over the rationals, producing a set of functions with unique
properties, only the irrationals possess.

This paper also attempts to address the following question: What properties
of addition, multiplication, division, and subtraction are preserved under trans-
formation by a radical? Mapping the radical to the vertical line in the upper
half plane reveals part of the answer. Mapping to the radical as if over negative
numbers reveals the other. These are interesting transformations, and reveal a
greater depth to the properties of the real numbers.

This reveals a picture where the primes, under an inverse radical are the
numbers for which squared means rationality. Since all numbers reduce to prime
factorizations, we would think that the digit sequences in these irrationals, and
potentially all, come from prime factors, as with natural numbers. However, we
find the sequences of numbers become so long, these numbers cannot possibly
saturate the list of irrational numbers in completion. There are many with dif-
ferently characterized structures and qualities we cannot hence prescribe to the
results only of the countable infinity of natural numbers.

And finally, the purpose of this paper is to study the way the pattern in the
irrationals drifts off into randomness.
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1 First Properties

As a brief introduction, consider some simple properties typifying those of these
strings as in most systems that might be considered. We have a logical state
defined by a character (φ), and then in turn by two others (ρ, κ). These two
operations are of primary importance in the analysis of these logical sequences, or
as I will call them, strings, because of their resemblence to rings as mathematically
defined:

φ = (ρ;κ) (1)

The first of these is the state, the next two are the linear sum and the se-
quential product. Together, they define the logical function, and in two manners,
one continuous and the other discrete. Both are summations of the information
we have for these functions at a point in the function, the first being the sum of
the states over an interval, and the second, being the group product of all logical
operations along a statement. These operations are unique if we take them over a
whole logical statement. These hold for all starting and ending positions as they
generalize and possess uniqueness. First, we summarize some of their addition
laws:

ρr,t = ρr,s + ρs,t (2)

κr,t = κr,sκs,t (3)

More accurately, to depict the construction of a given logical statii from
other intermediate ones, we have many such intervals over which we may define
the logical status. As we move through the string, we find that the current state
may be represented in terms of those that come before and after, as with two
statii. For two logical statii over two intervals, we have a whole representation in
one function taken from these two determining function, (ρ, κ).

φr,s = (ρr,s;κr,s) (4)

φs,t = (ρs,t;κs,t) (5)

The concatenated logical function is then given by:

φr,t = (ρr,s + ρs,t;κr,sκs,t) (6)
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Together these are the rules for composing functions, as well as making the
two measures (ρ, κ) and the state continuous as given with many (uncountably
many) logical statements, making the net function continuous. We can give
definitions of the linear sum and the product as the following:

ρr,t =
1

‖t− r‖

t∑
n=r

f(n) (7)

κr,t =
t∏

n=r

f(n) (8)

These carry with them the notion of using multiple functions together as
a single object; the ability to have such a function that remains continuous; to
have one which gives a continuation, and one with composition rules for it with
other parts of the same function.

These are useful, because they can be used to fill in parts of functions. They
have this property because they possess disjoint information about the logical
states. We need both types of information to avoid potential many to oneness,
to reconstruct the next element in a sequence, and to uniquely identify a string.
This nonuniqueness is introduced by the presence of closed and open, which we
will find to be useful mathematical concepts in the realm of logic.
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2 Logical Ruleset

We can use the composition rule as a theorem for the potential continuation
of a logical function to where it is not defined (forecasting), and backwards to
before the function summation started, so as to have an entire, continuous, logical
function. We can also use it to splice together different sequences. The only way
we have not yet described is an interstitial filling. One can see that many of these
transformations are equivalent or analogous to ones we would use with numerical
type of series.

These both use a base function’s values, the raw information of a logical
nature, in the form of a set, with the function to be constructed. We have:

F (n) = {f(n) : 0 < n < i} (9)

The logical set we work with is:

u = {True, False, Open, Closed}

Next, we have the logical tables for the values ”True”, ”False”, ”Open”,
and ”Closed”, these include the union, the intersection, and the complement.
Then, we have a table for operations we can perform on statements or rings. We
generally use different tables for different purposes.

We have the usual logical tables, starting with the set theoretic union:

∪ T F O C

T T O O T

F O F O F

O O O O O

C T F O C

The set intersection is different but also exists for these logial sequences:

∩ T F O C

T T C T C

F C F F C

O T F O C

C C C C O
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The complement is the not gate, and takes the other part of the interval.
This is its table:

¬ T F O C

F T C O

Then, we have the operator table, from left to right.

◦ T F O C

T T F O C

F F O C O

O T F O C

C T F C C

These are the return values for two input values in the form of a table. This
last table is composed of the values that we use in the logical function actively
when it operates on a string. With logic we use the union to expand the potential
end values of the string under use, rather than contract as with the intersection.
Consequently we have two varieties of operation and two varieties of string. One
variety of string is the state, and the other is the logical operation. We can also
define other logical tables.

Generally, we wish to use the union to describe the composition of states,
when the states encompass more set theoretic volume, given the inclusion of new
states. We use this, when we want all states to be exposed. The application
depends on the purpose. Additionally, we use the intersection, when we want to
compose logical sequences as operations. The main goal of this is to orient our
attempts at reaching a logical goal, as an intersection of alternatives, where the
alternatives are a union of many configurations. The idea is to find a stricter
conclusion as a logical intersection of rules on a union of states, when the latter
expands with state number, and the former contracts with logical rules under
composition. From this picture, we can imagine that not all systems contract
and expand with the appropriate rates to reach a conclusion.

First, we must keep the logical operation of the string on the logical states,
or list of True, False, Open, Closed values. The reason we do this is because the
function must have a well defined range. Therefore, we let the function be given
as the operation of the string on logical strings. With this a function is also an
operator.
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The result of a function is individual characters of a new string. When we
do this we get a mapping. We use the function with the given set in a logical
table, as an operator on another, or as an operator itselfon a ring. We do not get
an identity but instead a new set of symbols. It is possible to form an object that
has the behavior of a function and that alters a given function, in this system.
These behave like the function itself. Some strings are derivable from others in a
basis, especially via inverse functions, and some are not.

With these strings, the inverse string is the reversal of the normal string with
true and false interchanged. One can see orientation is a different matter than
an operation. The true false reversal combined with the orientational reversal, is
a non trivial operation. This leads to a reverse string for which multiplication by
the starting string is non-trivial. Results with these, as well as reversed strings,
depend on the commutativity of the groups and therefore their order. This string
however is the true false reverse of the last, and in general group multiplication
depends upon order. In this system, we attempt to derive properties of our system
from number theory to cycle back and produce new results. Group multiplication
depending on order eventually leads to non-associativity as well. This property
exists with the table for the complement and for the operator on the state. These
are a state transformation of the nature of a reversal.

Although these are not the normal type of functions we will consider, we can
consider functions of the nature of ”T” → +1, and ”F” → −1 as well. Usually
we will consider functions that use more complex associations so as to compose
rings. There is then the other way to identify a function, which is to take an
if then structure, and identify a sequence by explicit cases of true, false, open
or closed instead. As an example, we take the Cantor set and turn it into a
statement.

{CTC} (10)

{CTCOOOCTC} (11)

{CTCOOOCTCOOOOOOOOOCTCOOOCTC} (12)

The difficult part here is distinguishing the pointed end of logic from the
blunt end of our system. The main things we can do is either include or exclude
members of a set into groups, and consider comparisons of the nature of less than,
greater than, and equal to.
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3 Measures

One approach is the direct analysis of the strings produced. This can be very
tedious and difficult. But, the tools that come from this are useful. Two helpful
measures are the logically summative value, and the logical distance in statements
from openness to truth value on average:

G(ni) = {< ni − nj >: ‖f(ni)− f(nj)‖ = 1} (13)

Open to Closed would be another result to attempt to measure. We also
have the average absolute value of the logical summation. This is the average of
the strength of the departure of the system from the closed state.

P (ni) = {< ‖
i∑

n=0

f(n)‖ >} (14)

The logical distance in statements from open to true and false states is
analytic of the logical function, and the summative value is as well. These must
both converge to asymptotic behaviors to produce a circle, if we are to take these
to be logically natural and primary interpretations for behaviors of the functions.
We then arrive at statements we must find the value of such as:

lim{< ‖
i∑

n=o

f(n)‖ >i<ni−nj>: ‖f(ni)− f(nj)‖ = 1} (15)

This is a way of quantifying the modulo of the logic, as a pattern, the current
f(ni) being the number of the state, repeated imaginarily the statements length
over, until it flips. Building functions by counting True and False statements is
a simple way to understand a sequence, but there are better ways.

How does logic quantify understanding? What is a circle in the context of
a logical system? By creating one such circle by way of many things unrelated
we create a very complex problem, whereby the result is unrelated except on a
functional level, and the result is inadequate. Measures of frequencies in the set
are measures, not operators. Instead of this process, we should use genuine func-
tions, so discovered by a process of isomorphism instead. This is the alternative
way.

11



Logical Functions on the Real Numbers

4 Main Operations

We now develop a theory of logically based operations on strings. These infinite
strings of True, False, Open, and Closed each behave as operators on other strings
and on numbers. The composition laws are not those of numbers. We find that
one of these strings can fit in the real numbered interval from 0 to 1, and act
on others in the same interval. If we can set up the rules so as to preserve all
operations then we can deduce groups of these operations. The trick to this is
using operators with few logical bases.

If we can do this consistently, the results will be that of essentially a number
system. We cannot use an infinity of different symbols, for we do not have a rule
set this expansive. So, we use a minimal one of {T, F,O,C}. Since they have
no common center, any point works as well as the rest to take their composition.
This operation is the result of taking the string as a whole beginning at any point
with the whole of another string, with an arbitrary center. The result is a new
string with the no center property. This is a property of the strings, and not
their particular sequences.

The two operations given before are important, and we have composition as
before. To construct these other operations, recall that a logical string is defined
by a logical set:

u

And by a function:

F (n) = {f(n) : 0 ≤ n ≤ i} (16)

And for the set of all statements consisting of the true, false, open, and
closed states we get the logical statement as:

Ω = {f(ni)} (17)

Combining multiple logical statements can be done. Given a statement: Ω1, and
another, Ω2:

Ω1 = {f1(ni)} Ω2 = {f2(ni)} (18)

We form the net statement by the individual product of elements from each:

ΩN = {f1(ni)f2(ni)∀i} (19)
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There are of course operations we can perform on a string. One operator is the
set defined by taking every set of elements of a given length to a power of itself,
to produce new elements. This is the power on all strings modulo some length:

φpl (20)

Where p is the power and l the length. The logical table is ideally a set that pre-
serves this modulo some integers. But we find that none of those listed do, besides
the complement. Then there is the multiplication operator, by a statement P :

P (n) = {p(n) : 0 ≤ n ≤ i ∈ N} (21)

M(P, F ) = {P (m)F (n) : n,m ∈ N} (22)

The identity consists of all infinite length strings that preserve another on the set
of logical states. This is the closed on one end and open on the other flat interval
from zero to one.

A string is both a function upon a function, and simply a function itself,
in that it can be an operator on a function as well. Each operation is a string,
and can be broken apart into m long pieces to produce new operations via the
logical tables. One such function we can generate is also modular, it is the logical
function taken in groups m long:

F (n,m) = {f(l) : n ≤ l ≤ m} (23)

{
n+m∏
n

un : un = F (n,m)} (24)

Finally have an inverse function:

f(n)→ f(n)−1 (25)

This inversion is accomplished by reversing the logical arrow and interchang-
ing or reversing all true and false states along the string. To reverse the arrow we
flip the circle around as if rotating by 180 degrees. Together these comprise the
main operations that exist upon the string, not including those basic ones that
splice and remate the function to itself discussed earlier. We don’t do so much to
operate on the function itself on this level, but rather, with a function, and with
other operations.
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Derivatives can be accomplished, by looking at the function as an iceberg
floating to the surface, in layers. First, with one derivative, we want to extract
the essence of the function on a surface of one layer deep. A derivative is like
the change in a function from one piece to the next. Using this as a basis we
construct the derivative. We arrive at the following formula for the derivative,
by finding that function which matches the changes from element to element in
the list as given by the logical values of the logical operation. We wish to find
the inverse with respect to the union, intersection, or operator. In other words,
that operation that takes us from one point in the sequence to the next:

D(Ω) = {u∀i : f(ni) = uf(ni−1)} (26)

The integral is given by the inverse operation of the derivative. This is done
by taking each one with the next. It is constructed with the state logical table
for the union. This is the integral formula:

I(Ω) = {u∀i : u = f(ni)f(ni−1)} (27)

These strings may or may not have a repetitional structure in integration
and differentiation. We can write these with a few relations. Abstractly, the
reason is that the sample is one dimension shorter and hence for a first derivative
is composed of individual elements. These strings are fundamentally operators.
Higher order derivatives and integrals are given by repeating the process, and
using effectively larger strings for the propositions P . We can complete each of
these to infinite order.

With no center, the starting point on one string doesn’t matter for these
operations mathematically but does often in numerical practice. Equal rates
of variability, and a whole string with a whole string are the rules for their
composition. There is no center, in the sense of the product being independent
of the starting location on string P or on string Q in PQ. This lack of a center
property leads to multiplicative independence of the result with these logical
compositions. With this; one can see a level of rotational independence is afforded
by the construction of these strings. This is a composition of their sets, and
they become logically operated ’types’. These ’types’ are a new sort of number,
and inherit properties of their group. Here is what this operation looks like
mathematically for F , G and result H with a displacement of o:

H = G ∗ F : (28)
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H = {G(m)F (n) : n = [0, 1),m = [0, 1), ‖n−m‖ = o} (29)

Where F and G are their whole sequences, centered at n and m. The net
composition is independent of o, yet the order matters, and in it, each element
is the result of the operation of one entire sequence on an entire other sequence,
as we move equally through both. Alternatively, we can describe this as the
whole of one sequence taken with another whole sequence, with no lateral offset.
The center being missing from both, is missing from their product. Although we
would get a different sequence in general for a different offset, these strings have
the property that we do not.

Finally, we have an operation that extracts the logical values for the function
on all of a set of states by the set of logical values. For this, we use the propositions
m in length {P} as strings which operate on logical values unique to this system.
This is the dual of the previous operation where we operated on the state with
operations of length m. This is the operation of the function by modulo m sized
pieces:

ΛmF (ni, nj) = {F (ni, nj)u = Pu : ‖ni − nj‖ = m} (30)

This operation takes sections m long of the string as propositions P, and
applies them to the four operators, creating a logical function, as if upon this
silent set state operator.

These operations are then not entirely transitive, since most outputs go
back to where their inputs were, or we have an integral displacement. With this,
we preserve the structure of the base labeling over many operations, which is
necessary for keeping the strings one to one when idempotent and for recognizing
their identity.

This last operation is interesting, because it shows the logical function can
actually be a multifunction on multiple inputs. By generalizing this behavior we
truly have a continuous system of logical functions given that each depends on
an infinite number of inputs, and each results in any of an infinite number of
outputs. These do not necessarily correspond to numbers. These give a full way
to treat logical statements in a system of continuous logic, but they require a level
of expansion into new mathematical realms, to become fully continuous. We will
not find ourselves limited by the small set of logical quantifiers, but instead by
the process of counting.
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5 Continuity and Symmetry

There are many natural symmetries of the number line. We use a few that are less
well known than the first five in this list. These are the isometries as symmetries
of the line we can work with:

1) Displacement.
2) Scaling.
3) Cutting into pieces. (Self similarity.)
4) Reversal symmetry.
5) Infinite thinness.
6) Rotational freedom.
7) Free range and domain input output scaling.
8) The structure of R exists over every interval size.
9) The numbers encompass a volume.

Many of these are fairly embedded in our minds. The non obvious ones are
six, seven and eight. Six comes from the construction in this paper. A variable
rate of covering (seven) is another continuous degree of freedom we will discuss.
Finally eight comes from considering that in the mathematical realm there exist
spaces where given the numbers are representation free, we find them without
spatial interpretation, and consequently find that all numbers are somewhat con-
tained in one another, hence all of R is contained in each point. This construction
is one of reduced dimensionality, but it is also the limit of a neverendingly shrink-
ing real interval.

A primary assumption to make this transition to a size of infinity may be to
take the limit of the sequence size to infinity with these statements, but this is
nonefficient and may leave behind structure. By doing so, every string is infinite
in length, and all objects correspond to a system of continuous logic. We need
merely then re-generalize and re-equip our facilities to handle all strings of this
size. These carry over straightforwardly, and we find that the form of logic used
is actually a subset of the more general system of logic.

When do we cross the gap between the discrete and the continuous, to get
a continuous function, and when do we get a function defined with a natural
continuation from the whole interval to the whole real number line? If there is no
beginning to the logical state, can we still define a sequence without ends? An
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example, would be a closed curve such as the circle.

The strings become modal number objects. These resemble a more complex
system of numbers than the regular numbers we are used to, and are in a more
specific part of the mathematical territory of objects we could consider. These
are in some senses but one of many general notions of number.

If we are to define logical functions as continuous, and are to reconcile the
notion of a function used to represent a number, and these, we find that all se-
quences must be convergent, even if infinitely long, within an epsilon sized or
infinitely small interval. This is so that over a continuum we find a continu-
ous function. In doing so, we essentially give up on using the whole circle to
extrapolate an algorithm, and revert to using sequences together.

These algorithms fit into these epsilon sized regions and although they are
not contained in a point, they converge quickly enough for there to be virtually
no volume over which they are not convergent. It will come in useful to have
a constant function throughout in places. This is missing if we need room for
the program and cannot be done but for the logical states, or the abstraction
generated by a logical sequence operative of generating a constant.

By compressing the symbolic logic operation to a point, we can have contin-
uous logical functions. To have a different function we need merely define each
number in a sequence different by one in different logical values between two ad-
jacent points on two functions. This is allowed as we have tremendous room to
deal with a limit being taken even with such a change. The nature of the limit
at every point must be the same. We need this capacity to define functions for
which we have continuity completely with respect to the real numbers. Yet these
are ones based on logical values.

We define a function as a mapping, but restrict the values of the functions to
the logical states, and imagine one with rational spacing. These states are limited
in domain to the regular pacing of the interval, so as to uniformly fill space. This
restriction gives them a regularity for which we can construct a continuous curve.
In as much as they are regular we can say they represent statements.

We can define numbers to these, not so much by a regular procedure of
converting the sequence into a number, but by letting the sequence ask a question
as to the nature of a number, repeatedly adding digits to this number in a logical
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process, by way of the averages of the sum of states and the product of states
along the string or circle. Also, our strings can be taken to be rational numbers
on the irrationals. i.e. 2

√
6

These are not so much questions but are statements along the length of
the construction of a number, and they give prescriptions for what numbers are
about, in that they define infinite sequences whose results are as unique as the
numbers so represented by way of an expansion of logical domain, and results
that are exact in the infinite limit.

We can get the state ’closed’, from comparing two outputs as a symptom of
having two limits that never overlap between the two postulates, as for example
one continually false, with the other continually true. It is desirable to act upon
the larger logical context, wherein we have a supposition and conclusion, each of
which may be true or false. We also have a logical supposition to conclusion that
is reversible and true false interchangable. This should afford us two checks on
the logical state.

This is the input and output of a statement, and should work for a reversed
string, with supposition and conclusion reversed in action or direction of logic,
but not logically reversed except as individuals in true or false value. The reverse
within logic of the operators open and closed is closed and open. These reversed
strings have many of the same properties as the others but are the true/false
mirror image of a string and illustrate orientability is important for these strings.
Whe one is true and the other is taken as false, together they are open or closed.

Open occurs when the statements do overlap, or commonly converge to a
mutually true or/and false state or undetermined if sequential convergence is
associated with convergence to a result, which it is not always. True and false
eventually lead to a closed condition, and open disappears, leaving one of true
or false. There are two logical gates, and supposition to conclusion reversal.
Supposition to conclusion reversal is enforced by the symmetry in the logical
gates as a sum, but not on the level of a direct symmetry, where we would have
a symmetric logical operator. The logic operator is not commutative, but the
solution works equally well from conclusion to supposition as in the reverse with
as well T ↔ F with these statements.

Running a system until we get a consistently closed condition after many
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true or false, leaves the majority open. Using closed as the start of a statement
and open as the operation leaves closed for the conclusion. When not the closure
of a state, but instead, acting as closure upon a state is one way to use these to
have a controlled statement convergence, between postulates. Here, the rules of
the logical set and the formula we use to create these sequences take on a more
important role, for here they act as a ruleset in which to derive statements. This
is not about a risky search for theorems but simply about deriving results of a
number theoretic value.

There does exist a notion of correspondence between the functions as state-
ments, and the construction of a number, or value in a sequence, by finding the
closure or completion of a logical function over a closed interval of space. This
is ideally suited to the circle. We use the function instead of over a flat interval,
around a circle. In other words the sequence is ran around to connect to itself
in the shape of a circle. It need not be a cricle but forms a closed non self inter-
secting curve. It is these places for which we must find a once recurrent function
that has no beginning or end, for the circular types of these sequences.

The implications of using a variable rate input and output are interesting,
for all that matters with these sequences and series is that they are ordered.
With these we can accomplish resequencing of a sequence, and use the rings
so developed to redefine the real number line. These are easily accomplished
by associating two sets as a function with two different periods of coverage on
the interval. One way to describe a function is by filling the interval with a
series of density functions describing the distribution statistically and in relative
proportion. To do this we will need a metric for the range of the function. The
easiest way to do this is to have a variable density function. This allows us to
understand the spread or proportion of T to F to O to C even when one goes to
infinity.

We call the variable density source function a weight function, or a logical
metric:

ω(b) = N(b) (31)
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This is a depiction of a variable rate density in the range on the bottom
in magenta, roughly tracking function height. Remember we are afforded this
freedom given that only order of the rings and sequences is definitional of a
seqeunce and not the displacement between two. This is important because we
can do things like having a variable density to the range of the variables. This
is different from an argument change and is essentially a move to a frequency
function.

Such a lateral density function would afford us with two terms in the deriva-
tive, and can be done additionally by the encoding of another sequence. The
analysis requires a reworking of the concept of limit and derivative, and a shift
due to the properties these rings of rational reflection possess. These functions
represent values in the non-discrete interpretation and are of a variable density
in the sequence of irrationals.

The sequence, through rules, can be determined by these logical rules them-
selves, in that they can encode the order. These series put order before the
notion of number, as the numbers to be encoded must, or rather depend upon
being defined by their placement in sequences. Using the group rules and a spac-
ing function as a series we can devise a law which displaces a linear sequence
along its length. This can be determined by another sequence.

If all segments are chosen, but the order is determined by a new auxiliary
sequence, then the modal rate is functionally variable. These functions are then
in some sense variable in both their lateral and vertical degrees. Thus, we can
have functions that always add to a continuously varying amount, even as it goes
to infinity. These are a strange notion for functions, but admit a simpler inverse.
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6 Number Rings

Every object in this system is both analogous to a number, in that it possesses
properties like a number, yet it is not a number. I have called these rings, since
their properties depend on the properties of many numbers working together,
and they most resemble the mathematical object called a ring.

These are the properties of the rings:

1.) Asymptotically representative of number.
2.) Infinite number of elements.
3.) Non-repetitional.
4.) No center or initial starting element.
5.) Multiplication independent of displacement.

As a whole, these ’numbers’ are really something of a ’modal’ number, in
that they have a modular structure given their rational base, are represented by
infinite sequences which inherit the properties of a group under their operation,
and reduce to numbers when we take certain limits. These are logical sets and
behave as an object akin to a number fractal, or fractalline number.

These numbers, which I will call loosely, ’rings’, have many interesting prop-
erties. One, that as we move through two series we encounter results along the
way that compose a new unique product ring. This ring does not depend on the
spacing or offset between the rings in this process but does depend on the order
of the rings. Additionally, if a logical value comes up somewhere from a spacing,
and not in the other, it comes up somewhere else with a different spacing. It will
inevitably come up in the same relation to the composition ring that it had in the
first scenario, but with a different initial spacing. This is so that multiplication
is defined as without a center for the operation of ring composition.

In this the rings are independent of offset on the analytical level. It is a self
similarity of the irrational number expansion under rational multiplication groups
that causes this. We sacrifice this additional property of different results with
spacing, for the property of multiplicative independence under a ring ring com-
position. As a side effect we get a multiplicative type of group isometry. These
functions inherit the group properties of the logical group they typify. These are
polysynchronous in that they each are actually made up of multiple periods, and
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expose these numbers under different operations or upon rings. These all possess
a group with multiplicative like properties but without an identity.

An argument that we can define such sequences, is given by the hypothesis
that they be complete. That if one element was missing, we could find it given
the rest of the sequence, so that it would possess the properties it does, most
especially, no center. Given this one piece and duplicates, of this existing, we can
therefore find the whole sequence in principle with enough copies, or define it as
unique. With this other part of the sequence present, we can use one to operate
on the results of the other, and get a completion with this missing piece from the
rules inferred from the completion of the ring with the piece missing.

An example is one that is open. Here we merely mirror the elements to get
a sequence:

OCFTTFCO (32)

One part is then the unidirectional complement of the other and the strings
resolve to a single logical element. With this process, it is true that if we have
a missing piece, and can fill it in uniquely, then there exists a non-constant ring
in comparison to this position on the ring. Noting this, we must have a way to
combine rings independent of an origin, since the sequences have this property.

We can uniquely produce infinite one dimensional product rings from two
one dimensional ones in the manner given before for their multiplication, with an
independence on o. These functions or logical sequences exist side by side, yet
do not depend on a center, or in their displacement in multiplication. From this,
they are polysynchronistic in the number series. We have for ”multiplication” of
these:

H = G ∗ F (33)

H = {G(m)F (n) : n = [0, 1),m = [0, 1) : |n−m| = o} (34)

We also have special cases:

δ(n) = {G(n+ 1)F (n) : n = [0, 1),m = [0, 1)} (35)

M(n) = {G(n)F (n) : n = [0, 1)} (36)

If (in the continuous limit) we can find a solution where:

M(n) = δ(n) = ∆m(n) (37)
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Then we have a sequence without center, under multiplication. Or in other
words, a result independent of the displacement between the sequences. This
requires two sequences to define. A way to do this is with sets of numbers with
properties and divisions into the appropriate sets in the interval. These may have
a variable density. The idea is to set them out uniformly so that there is no center
in reflection over any of the points we use as starting points in the multiplicative
operation. For this we will need the full rationals.

We consider P uniformly distributed mirrors. These reflect off each other in
such a manner that they become dense. By the extension of mirrors as 1/P in
size and in Q parts we find mutual symmetry and equivalency to: Q

P ∈ Q.

These are the reflection points, and constitute their own image in the way
they reflect over themselves. There is no rational center among the rationals in
the unit interval. They are identical in all the rationals. Also, although this will
not be required, these occur at an even scale division. This allows them and their
multiples (all of them) to cover the whole interval. With a ring as the identity of
these mirrors.

These can be reduced to one of many kinds by way of an integrally based
logical representation:

odd

even
: Open,

odd

odd
: True,

even

odd
: False (38)

This particular representation may be interesting, but for now, the algebraic
connection is not clear. We need more elements of this group to establish a one
to one relationship with a function. We can, of course, come up with an alternate
prescription such as:

...,
p

q
: O,

p+ 1

q + 1
: C,

p+ 1

q
: T,

p

q + 1
: F, ... (39)

This and other sequences, afford us great freedom, so long as we distribute
them evenly, but the correspondence to the natural numbers is not clear. As well,
because these are rational sequences, when we include the rational numbers for
every element of the set, the sequence becomes folded over into itself such that
we have repeating locations in the reals. What we need abstractly is a set of
numbers for which this pattern of all integers over all integers is preserve,d and
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not duplicated, so that it is unique. For this we must go to greater depth, to that
of all rationals in each member of the sequence.

This is difficult, but can be conceptualized as an infinite set or infinite series,
convergent at points along the real line. This is abstractly the multiplication of
two sets. The interesting thing is we can imagine fixing the rotation of the series
(its slope) into a set of places finite in size; to keep them in alignment. But, in
this scenario what really happens is the gap size between mirrors goes to infinitely
small, and the sequence lives here, existing only within the limit, the gradations
in the functions now being continuous. These are many in kind, and do have
roughly an order, given by the properties of the end limit sequences which are
infinite in number. With this, the sequences have no center, but they have an
order, holding for any two in multiplication such that the result is unique and
also without a center.

If we have all rationals: p/q = r ∈ Q then these satisfy a rotation property.
Consider:

p∗

q∗
=
p+m · o
q + r · s

∈ Q (40)

With:
m, r = 1, s, o = {0, 1}, p, q = 2k, k ∈ N (41)

We get the rationals. These function by themselves as one element, but the
idea now is to look for a group of their elements that behave like the rationals
under this set condition, and such that in order, produce a sequence freely for
the interval. We must take all numbers divided by all numbers for all mirror
distances. This insures that we have a function of a form such that all reflections
of all reflections, of the sequence elements as numbers, give equivalent series for all
such numbers. With this we have a centerless product, given their construction.
These only work when ’rotated’ by a rational number, but, we have multiplicative
independence on displacement.

The general representation of a rational number looks like:

p

q
∈ Q p ∈ N q ∈ N (42)

With q scaling with the numerator such that p < q, this spans a group and
has no center. The p are now different elements of this ring. But this causes a
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further problem. The elements overlap in the ring and cause interference. From
this, we must resort to an alternative. A member is now an irrational.

Every irrational number is duplicated into all rational numbers for every ele-
ment of the sequence, since the rational numbers have this mirroring property and
no center we require. By doing so, we learn that the sequence, if not duplicated in
its rational multiplier, must consist of all mutually irrational numbers, with the
exception of one rational point. This construction is actually a return map of all
irrational numbers mod all rational numbers. This has the required properties,
and every one of these elements, in a list, must be an irrational number. There
are enough of these to fill the required space.

If we did not go to the irrationals, and used the rational points as the
complete set, instead we would get all the same symbols, and in being the full set,
it would not be able to symbolize different symbols uniquely. They are therefore
not a suitable basis by themselves, and need extension into the irrationals.

Once we have broken free from the shackles of the rationals the irrationals
form a new basis for the set. Modulo all of the rationals we can produce a
function with the multiplicative property needed, as everywhere the sequence is
then mod the rationals, and a limit function reveals a starting sequence. All we
can do is probe the surface of these functions. The way we order the elements is
roughly by the slope of the limit function on approach. It does not matter how
we choose points if we let an irrational sequence approach a limit by reiterative
tiling, so long as order is preserved. By geometric construction we can show that
the numbers in a given exact order of rational multiples in the real interval from
0 to 1, fall in order at increasingly later times with couniform transport, rather
than discordantly. This means there exists a similar sequence in the irrationals
on every scale such that they map to the same end point with their symbols in
order. We see self similarity in the graph of their multiples.

These are the conditions for elements now:

1.) No duplicates in the set among Q.
2.) Each an irrational potentially multiplied by a rational.
3.) A different rational among the set with each one.
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Depiction of irrational slope passing through a tiled rectangle an infinite number
of times before meeting itself again.

For this diagram, when we have rational measures of an irrational number
difference, it determines order. In repeating this process as we go in order the
numbers appear to the larger side of a given rational as a repeating pattern, still
in order and from smallest to largest. This is one absolute form of order. To
make a sequence that is in order of irrationals, restart when modulo the rationals
at some distance; 1/N in practice, ahead of the starting irrationals and go in a
circle. The numbers you resolve will be the irrationals needed in order to produce
a convergent sequence. In fact, each element of these sequences as a whole are in
an equivalence class, and so therefore obey the properties of a group.

These are in symmetric juxtaposition to the rationals, and among the real
numbers, but we must use all of an infinite sequence to construct them. Given
their property to fill in all the gaps between the rationals, the irrationals form a
complete complement of the rationals, and are mirrored over one another, and to
only depend on orientation. These numbers are therefore at the right locations
to be duplicated via the rationals, to fill a dense set as reals. We cannot use
the rationals as one such set, because they self overlap and we can construct a
sequence only with them. This explains the absence of a multiplicative identity;
it becomes Q. We use the irrationals each times all of the rationals. Then our
numbers are rotationally free of the rationals.

At least one ring exists, the null ring, consisting entirely of zeros, corre-
sponding to the included point of zero in both the irrationals and rationals. It is
here they overlap. Since the rationals cannot reach this element it is not a part
of our construction. It is however reachable with sequences and as an element of
the reals. We can use it as a ring, but now as an element strictly of the reals,
and not the rationals. The system is strongly determined by its first element,
but for the most part, a sequence appears chaotic. There are many ways we can
associate a sequence with an irrational number.
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The expanded set is all:

a =
c

d
· b ∈ R (43)

c

d
∈ Q b ∈ I I = R\Q (44)

Although the real numbers are required to fully resolve properties of these
numbers, we can rudimentarily use rings with a rational set of values for analysis
on a computer. We do require the irrational numbers, as the rationals as a whole
are but a point in the irrationals. For these we need parallel constructions of
rational numbers multiplied by irrational ones, over themselves as an infinity of
layers or tesselations. With the rationals, the irrationals, complete the picture
with the real numbers. We need this full set of numbers along the real number
line to do this analysis.

It is not wise to space the numbers at regular intervals, because then by the
rationals they cover each other, and we get interference. With purely irrational
numbers we can use irrational numbers in the interval with an irrational spacing.
But, then we lose order and the unique meaning of the symbols, which becomes
important asN →∞. We cannot use irrational spacing again because we produce
a rational number inadvertently. If the irrationals are different with rationals, we
can avoid rational number overlap. So, these sequences are sequences of irrational
numbers each times a rational number. These will preserve order at all scales.
We will find mutual ring agreement is the foundation for a limit.

The irrationals tile over themselves an infinity of times before matching up
to themselves. In this case we have two infinities in these numbers to contend
with. The irrational, from moving over an infinity of times to match up, and the
rational, by covering with a countable infinity. We can make use of this flexi-
bility to construct these new objects as numbers with an isotropic multiplicative
identity. These two types of infinity are used in different ways.

This process forms an infinitely numbered extension of the rationals by the
irrationals. Each element is actually the set of all rationals multiplied by each
element. This makes up an infinite set of rationally displaced irrationals. Rational
points alone would not work, as they overlap with other sets of rationals, but,
irrational points do work, as long as the elements so adjoined are all mutually
irrational (under multiplication and division). These may disagree or agree in
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their end point. No single radical base works with all integers, since these overlap
with squares and thus the rationals. Since sequences of irrationals quickly become
rationals and we have few other tools available, one may speculate these are really
transcendental numbers. We do have non-algebraic numbers in this set.

To get an irrational sequence convergent to a point consider making regularly
spaced irrationals at rational values to preserve order. What we find is that then
the rationals overlap, and our desired property is lost. This can be relieved by
considering sequences of irrational value, of differing values. These irrational
numbers should be all different. Later we will add a multiplicative constraint for
which their product cannot be rational. One such sequence is convergent. We
find the elements of this type of number ring or sequence are:

Q[{rn ∈ R\Q, n ∈ N}] (45)

These rn symbolize elements of a sequence. If we take the collection of all
such objects we get, remarkably:

R (46)

We construct these series by adjoining a set of rn, each times all of Q. The
properties of these as numbers are that they have a natural number labelling.
We generate one of these sets by an irrational sequence multiplied by a rational
sequence or not. At most, one element of the sequences as a whole, can be a
rational number. This single rational number must therefore be possessed by
only one sequence in repetition. This sequence is the zero sequence, the additive
identity.

The multiplicative identity has become Q, of which one element, the zero
sequence, is shared between the sequences and rings. This is the continuous open
sequence as well. The generator of the multiplicative identity, is actually the
additive identity. The collection of all of these rings behave as the real numbers,
R, because zero, is representative of all of Q. Yet, they are really a series of
numbers. If we use a unique rule for all such series then these are an infinite
sequence of irrationals yet they may be multiplied by a series of rationals:

Qsub = {qn : qn ∈ Q, n ∈ N, qn → q∗} (47)

Isub = {in : in ∈ R\Q, n ∈ N, in → i∗} (48)
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We find that the multiplicative property is now directed at irrationals, and
addition to rationals. For the product this is a return to the identity from two
irrationals, while for the sum the identity is rational while the numbers we operate
on are irrational.

The following is then the object we have constructed, and many look this
same way. To obtain our symmetry with respect to the rationals, these must be
convergent to an irrational or rational number. This requires that both Q and
I sequences must converge both to rational or irrational numbers for a mapping
back into the set.

B = {o · qn · in : ∀o ∈ Q, qn ∈ Q, in ∈ R\Q, n ∈ N} (49)

The limit of B is the whole real number line. We hope that:

Bseq → q∗ · i∗ (50)

We get a result of:

B = {Q[{rn ∈ R\Q, n ∈ N}]} (51)

This has elements rn such as:

1

4
√

37
(52)

In other words rings are from:

B = {Q[R\Q× N] 6≡ R} (53)

The notion that we may multiply without a center implies this is a problem
of the nature of multiplied numbers in classes, two of which produce one under
×. Starting with the previous set we take:

p, q ∈ B (54)

To show:
p · q ∈ B (55)

And:
(p+ l) · (q − l) ∈ B (56)
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And:
p · q = (p+ l) · (q − l) : ∀l ∈ Q (57)

We take:
p, q ∈ Q[R\Q] (58)

As:
a± b = a ∈ B± b ∈ Q (59)

Then we have N natural number sequence equations:

p · q = (a ∈ B− b ∈ Q)(a ∈ B + b ∈ Q) (60)

Or:
p · q ∈ B (61)

And we find:
−l2, l(q − p) ∈ Q (62)

Then, these rational parts vanish when we subtract out Q if we think of it as a
fixed set, leaving:

p · q = (p+ l) · (q − l) = p · q : ∀l ∈ Q (63)

We can infer that, given:
p, q ∈ B (64)

Then:
pq ∈ B (65)

Now we can say:
B = {Q[R\Q× N]} 6≡ R (66)

Note that l ≡ the multiplicative identity. This means, anywhere a multipli-
cation is, we can introduce or remove a rational number. As well, we may treat a
rational and the multiplicative identity equally. This indicates that the rationals
are taken to all have a value of one in multiplication.

We learn that generally, we can multiply out the rational parts. This is
interesting, for it clips off all but the tail of an irrational number. Lastly, this
holds for the whole sequence, showing that if we take two of these objects we
can produce a new one, in the same set, for which there is also no center under
multiplication. What we have just shown is that multiplication is rationally
independent. Is this the only such group to behave this way?
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With the sequences encoded into the rn, we can say that every such sequence
is non-repeating. We have obtained our second property. The first was multi-
plicative independence, which we have met by construction. Each rn brings an
entire Q along with it. Yet, each rn is not an element of Q but one of R\Q. These
numbers are irrational. Although the answer does not seem clear cut. A series
of irrationals can converge to a rational just as a series of rationals can converge
to an irrational.

The order is not always precisely clear, when using different irrational num-
bers purely, however it is when we use a sequence of irrationals convergent to a
point. If they are convergent to a rational point, they spend most of their time
in the neighborhood of a rational, and have one such infinite element. This may
depend on the point. We can have an element converge to an irrational as as
these may represent sequences.

These groups have no center, but we find they are only rotationally free at
the level of Q. To get them rotationally free at the level of R and still contain in-
formation is interesting. This would however mean there would be more numbers
in R than there are in R, which is not possible. So we stop at rotational rational-
ity, which corresponds to these spacings. This group of objects is interesting, and
not null. We can arrange the strings to be any sequence we like, following one of
these irrational spacings to the limit of a series of such numbers. These hence do
not represent numbers literally in every context, for example they could be taken
as sequences to be re-interpreted as numbers. These numbers are consequently
irrational.

Their behaviors, if each number is a ring or vice versa, are that of the
real numbers. Only these possess numbers representing the full breadth of the
sequences with rationals, that fill the space with a sequence. This seems to
suggest that these properties are those of the real numbers. But these are each
but a subset.

Every one of these is an irrational number modulo rationals or a rational
times an irrational. It is simply a natural number counting set of all the irrational
numbers specified. The interesting thing is that these imply sequences each of
which contain no repetitions. For this, the sequence must be everywhere unique,
and this is a very interesting property, because the numbers are entire in their
irregularity, wherein, considering any bases of the ring, we can arrive at no repe-
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titions of this base the ring over. This proves the property of all rings being non
repeating. With a rational and irrational as sequence elements the elements can
be elements of other sequences or can be other sequences in general. However
they may not be such that they overlap, except when

With an implied convergence with ring length approaching infinity, it is
sufficient to take large rings for statistical purposes. The pattern is given by a
sequence of T,F,O,C as a string in its order. For instance the last gives a unique
string of logical elements. This resolves to a set of functions and set of irrational
numbers, but the above series sets the order. Irrationals preserve distance and
therefore order with the tiling of them into adjacent squares across the interval
when we use them in a convergent series. With this, we can use any sequence
which does not overlap with the rationals. We can actually technically use one
rational point per full set of these rings, as any more would create two points in
the series that overlap, implying the existence of a rational relationship between
them and a multiplicative identity.

We find that rather than encoding for each of the logical outputs we can
merely use a counting process of natural numbers and irrational numbers as
elements for the sequence, F (n) when we fill the circle with all multiples for a
given item in the series. The F (n) is now a function on these regions of R, with
any regular sequence we like, beginning from anywhere, equally spread out in a
circle around the circumference. This construction is such that there does not
exist a ”zero” or start in the sequence between two circles and multiplication is
independent of relative angle.

The complete collection of all of these numbers is given by:

B = {Q[rn] : ∀n ∈ N} 6≡ R (67)

rn = anbn (68)

an ∈ Q, bn ∈ R\Q (69)

A sequence of rationals in the irrationals would spoil the symmetry between
what is reflected and what is real. Consequently, there is a single rational in B.
As these numbers exist they are in some ways two dimensional. For they are
the composition of two different series: a rational and an irrational, and these
are each infinite in number. With this we can put them into a two dimensional
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correspondence with Q × Q. This object has the series numbers, but not their
values under logical evaluation. If we are looking for interesting number behavior
we should examine the connection more clearly.

When we compose these rings, we find a correspondence of the nature that
when we take the two series and consider their limit point, it must be a symmetry
point of the rationals. Therefore the limit point is not a new sequence. If we
put these on the same footing however, then we should have no problem. The
rationals take care of this. They produce a seive, because the remnants are the
part that distinguishes the rational from the irrational, and only the structure of
these is left over.

We can delimit the first rational part, but soon we are left with no number.
These numbers however are irrational, and we can not delimit a part to reduce to
the rationals by multiplication, addition, subtraction in general. We do not divide
by these numbers in this process. Instead of an element being missing alone, it
is also missing from all rings. Or, it is present in the form of one statement of
neither true nor false.

For this consequence it is neccessary that there be an exclusively new element
or category for which a labeling system of construction of this sytem, (given its
uncountable nature) requires a new element to be associated with these numbers
and with this individuated rational ring representative of all.

These sequences under logical operation are nonassociative and noncommu-
tative in general. Finally, when the decimal part becomes a fractal we have a
fractalline number, and it should display this behavior at all scales. Is such a
number derivable within this system?

The primary impetus of this construction was to obtain no two equivalent
numbers for in every series. With this we obtain a circular continuous group with
one multiplicative identity element. These are the rings and the sequences.

To do this, recall we are working in R\Q. This is with the exclusion of Q,
which includes 0 and 1. These are the usual additive and multiplicative identities.
The elements 0 and 1 are asymmetric. One is present and the other is absent
from this ring. One is not included but as a limit point, so it cannot be the
multiplicative identity. Also, for each sequence all the an are distinct and all
mutually irrational as can be found by multiplication. The additive group stays
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as normal, meaning we can still have an additive operation and even an additive
identity of zero, which we include in the set for this reason. It appears to be null.
It does nothing under addition, yet can be a result, and is the one rational point.
Ideally we want to construct these series by:

S = {an ∈ R\Q : ∀n ∈ N, an 6∈ {Q[ai] : i < n}} (70)

These are then all irrationally related irrationals. There are no rational
multiples among all of these, and all numbers are irrational. As well we can see
this set is not complete, because it ’comes into being’ as the elements are added.
We need this for the multiplicative structure. As well, the sequences must be
rational or irrational to satisfy the property of functions to possess elements of
sequences.

This set can be constructed, and is unique when they are placed in order with
rational multipliers. Yet, there is no natural way to do this, and as a consequence
we have no ordering but the one given. These provide the ordering of the numbers
but not the sequences convergent to these. These limits are therefore unique but
not for every unique sequence. We expect that the irrational digits converge as
fast as rationals. This is likely not the case, with summation taking different
amounts based on the irrational. This gives reason to treat such sequences as
equivalent. Only then are they unique results, but the inverse can never be with
points, excenpt an irrational. This level of meaning depends on the level of our
ability to decompose a number.

These sets interestingly enough are convex, as the irrationals are and al-
though they diminish the set of the irrationals, they as a set expand. There
are uncountably many infinite valid elements that can be added. This gives the
impression of an expanding realm of application, but these vectors alone are very
low dimensional. However, the chance of mistaking two numbers would be very
low, and due to accuracy only. There is ambiguity however because a number
could be a rational multiple of another irrational number, but we may not know
which one. One would think the irrationals would mask such a regular pattern.
But, the pattern itself hase resiliancy, and we may be able to deconvolve it. There
are however rational sequences within the irrationals. We find the rationals are
to the modulo classes of the integers, as the irrationals are to the primes. They
are in an equivalence class of irrationally related irrationals.
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In summary, the rings are the numbers in this theory. They consist of
irrational numbers and as statements are equivalent to numbers. They have a
multiplication property, but not by rationals. They have an additive identity,
and may be a rational amount from another irrational, but not a multiplicatively
related irrational. This preserves the structure of having no center to the product.

The irrationals are rotationally free in their group. And, in existing without
a factorization, they are independent of the fundamental theorem of arithmetic in
the group of their digits. Consequently they do not usually have a pattern. But,
this independence alone gives them a freedom to exist with a group nature of their
own. This group structure is cyclic, as we have found, among their sequences.
We can form any combination we like, and the order of the these elements does
not matter. These form a commutative group.

We obtain the full structure of B by bringing in all products of all ΩP :

αP = {rn =

√
P√
Q

: n ∈ N : P,Q ∈ P ∗} (71)

ΩP = {rn =
A
√
P

B
√
Q

: n ∈ N : A,B, P,Q ∈ P ∗} (72)

B =
∏
∀

B B ⊂ αP (73)

Is it true that the structure of all possible irrational sets produces or is
equivalent to the products of the reduced group ΩP and that all such possible
sets is the full set R? Do these duplicate the structure of the primes or natural
numbers?

This appears possible, given the existence of numbers such as 1/π and 1/e
which are transcendental and yet could be the limit of an algebraic sequence such
as these.

We have learned there are several types of numbers we are dealing with:

Irrationals: R\Q: All irrationals in R.

Rationals: Q: All rationals in R.
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Irrationally Irrational: Numbers not a rational multiple of any other in
the set. These are neverending irrational sequences. We cannot take from the
outset of the selection of an irrational random number for it to be fundamental,
or a base prime irrational. Instead, we see continuum irrationals to be made up of
many irrational bases, with potential multiplication by rationals. Those elements
selected from B are suited to this task, and fundamental. Those elements selected
from ΩP are suited for this task.

Irrationally Irrational Cosets: Despite the ambiguity in the irrationally
irrational numbers we can still define these in a constructive manner. These are
those numbers which are rational multiple cosets of a given irrational. They are
not unique to the base irrationals given, since we could multiply two and would
get a rational prefactor on another base irrational. They come out with other
rationals in this process. But, we can with twice over multiplication produce a
rational and by matching up to the now rational part we have the other rational
part. Those elements selected from ΩP are coset members of those from αP . Is
there a coset process that terminates in all irrationals, or should we properly
define this as but one step?
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7 Polynumerous Types

We should not get the identities of the logical system and the groups of numbers
confused, one is of a much larger measure as compared to the other. Although
the logical matrices have a measure of zero relative to the sets, these operators
have identities in the ring, as well use three states together, so these sequences
become higher dimensional in more complicated logical structures.

These are the properties of sequences:

1.) Asymptotically representative of function.
2.) Infinite number of elements.
3.) Every element a member of the logic table.
4.) Symmetries and group properties inherited from logical table.
5.) No center or initial starting element.
6.) Operation independent of displacement.

In:
Bseq = {qn · in : qn ∈ Q, in ∈ R\Q, n ∈ N} (74)

Bseq → q∗ · i∗ (75)

The sequences give different outcomes as a result of string string correspon-
dence. When we can derive an irrational number of the same kind we get a
matching condition, and they correspond. When we do not we get other cases.
The rationals are the space we design our logical functions around. Consequently,
they are the space where our produced string must be close to the real one. The
irrational space is the space of our logical system, and where the statements are
contained. There are four cases of convergence to consider as a result:

ring-ring comparison same seq. different seq.

truth value T F

The ring ring comparison test.

operator on op. Q R\Q sequence/ring converges

same # set q∗,i∗ O F s Y/?

different # set q∗,i∗ T C s,r N

sequence/ring s s,r

The operator table, for operations of these upon each other.
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operator on ring Q R\Q sequence/ring converges

same # set q∗,i∗ C T s Y/?

different # set q∗,i∗ O F s,r N

sequence/ring s s,r

The table for an operator on a ring.

operator truth Q R\Q sequence/ring converges

same # set q∗,i∗ C O s Y/?

different # set q∗,i∗ F T s,r N

sequence/ring s s,r

The operator table, logical state of one operator to another.

We can explain the reasoning behind this as follows: ’Different’ corresponds
to the sequence having members in different sets or if we were to change the
order in the table. We have several types of action. One is an operation on an
operation, two is an operation on a ring, and three is a ring on a ring. These give
different results. If the irrationals are considered unique, then it is clear that they
only return equality under this limit series when they match up to identical copies
of themselves or produce a rational. With this there are two types of information
contained in every number. We will find this ring analogous to a ring of primes.

When both elements converge to rational numbers, what we obtain is con-
sidered outside the ring, so it is a result, and must be either false (rationals
different) or true (rationals the same), since we have a truncated statement, it
does not pertain to closed or open. Recall the rational numbers are the identity.
When both elements converge to irrational numbers in a test for equality, be-
cause the two infinitely long statements yield a series that either multiplies the
same way and is mirrored (such that the product is rational), or we get a new
irrational number. We get true for a result, open, for a ring, and true or false,
for an operator on a ring.

When the first is convergent to a rational number and the second to an
irrational number, the point is not an element of the ring as of yet, or has yet
to be obtained, and the means are not subtle enough to uncover the irrational
number, so the result is open. When the first is convergent to an irrational
number, and the second is convergent to a rational number the logical operator
is open but the logical state is closed. This is therefore false for this operation
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on a ring.

The presence of true and false and open and closed gives us an operator
string, because these values instantiate such behavior, and, strings that are en-
tirely open and closed are reserved to be rings. We take irrational numbers
themselves to be equivalent to long strings of true and false or open and closed,
when we do number correspondence. If we can show a one to one correspondence
between the series going into statements and a produced point then we have a
view into the behavior of the decimals of irrationals.

This process of inclusion and exclusion on the set seems very reasonable,
given that we identify an element against a background. As well, we now have
comparisons. If the elements of the series are never rationally related, then we
have identified two completely unique numbers, with the property of a universal
freedom over the rationals. These possess and maintain irrationality with respect
the rationals under multiplication as a group.

We must decide which logical purposes values in the strings and the operators
possess. This is neccessary, because without it we will not have a complete
dictionary for the numbers. Also, we can simply use Z4 but this produces an
uninteresting dictionary and specifies no boundary between operator and number.

What we need is a correspondence between the logical operators and states
in the operator strings and the state rings. The operator strings can act on each
other, while the state rings act like numbers on each other. For this, we need to
be able to somehow represent state multiplication and addition. The operators
meanwhile operate on the state rings to produce new state rings. The operators
should operate on a higher level, and the states can then be the numbers. This
also gives us some hope for considering the operators as those of normal number
operations.

Here is the logical operation table again:

◦ T F O C

T T F O C

F F O C O

O T F O C

C T F C C
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Here are the cases we need to consider for which symbols are for which of
strings or rings:

Looking at the logic table for an operation, if the statement ring were all
T,F and the operation string were all O,C then a function’s operation on it would
reveal T mapping to T and F mapping to F for all O,C. Therefore, nothing would
happen.

If a string were all O,C then a function’s operation on it if all T,F would act
like Z2. False reversing O,C and True, maintaining them. This reverses or leaves
alone all statements of the string. So, if the string is composed of O,C then the
operation is string reversal at points and not on others, but is specific to T,F in
the operating string. With this, we can construct any new number.

If the string were O,C and the operator T,F,O,C then the T,F sector behaves
like Z2 producing new strings while the O,C sector on O,C would behave as
composition under a new operator. We will use this version for reasons to be
explained.

Most of the functioning between operators is of the nature of true, false,
open and closed, when on state rings, or statements. To get a string to converge
we must find a way to get the set of true and false to change into open and
closed by combining with other true, false statements. We need both groups in
the operators for intermediate states so that an operator with all of these may
contain operations between all of them in other operators.

So, we have arrived at:

Operators from the set: {T, F,O,C}
States from the set: {O,C}.

Operators then operate by Z2 on statements to produce new statements and
by submatrices we find them to be the property of addition and multiplication
under O,C. The numbers are then in binary, and we have a correspondence of:

Open ≡ 1 Closed ≡ 0

The top right part of the logical operation table looks like addition of num-
bers, while the bottom right looks like multiplication. Although these are in the
operator, they do not behave in the same way exactly, unless we use the right
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encoding. It would be interesting to use this operation also for these purposes.
To make them operators of their own and for reference consider the following
binary operators on the rings:

+ C O

C C O

O O C

× C O

C C C

O C O

With these, we can define the normal acts of addition and multiplication be-
tween statement rings. This completes the behavior as numbers. It is interesting
that we can formulate a consistent system with open and closed taking the part
of binary operators on intervals of a decimal point system to obtain operations
between numbers as well when we combine them.

We find that in reversing a string, false acts like open in the addition op-
erator. This makes sense, for to get the other state of true or false, we must
go through open. Also, ideally, we would like the end conclusion of openness or
closure to follow the last step for which we obtain true or false. This will come
in as important later.

For instance, the union has Closed as a multiplicative identity, the inter-
section, Open. The sequence operator exists with this for both True and Open.
The union has Open as additive identity, the intersection, Closed. There is no
additive identity for the ◦ operator between sequences and rings.

The sequences, or strings, have rational elements multiplying each irrational
in the series, which we need for the multiplication identity, and for uniqueness of
series in full over the reals. They operate on rings to produce new ones with the
same properties. We can do ring checking with irrational numbers, and sequences
are otherwise rational or irrational. The rings have their multiplicative identity
in one element, a zero for the rationals. For the sequences this is identified with
one string, the all open one.

When we do a comparison test, which is the structure of testing with another
series accompanying a first, the result is rational or irrational, but by a good
bound can give us the logical value in the larger program structure. The result of
comparison is not a number in the set of statements and converges to a rational
under certain provisions, such as termination. The sequences therefore constitute
an equivalence class.
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Statements and sequences feedback from results obtained by operations on
the rings. This is the normal mode of operation. For a result to be out of
sequence, it is not on the ring. Therefore, rational results terminate and may not
have an interpretation back in terms of the system, which is now self terminating
and closing, so long long as new sequences are not admitted.

This system of rings ’lives’, on the open interval with Closed at 0 and Open
at 1. These represent the states for operator truth. Using this same left right
organizational scheme, we consider the other logic tables. For the operator on
another operator, we find Open and False with the 1, and with the operator on
the ring we get True and False at 1. In the operator on operator, it is False at zero
to True at one. In this sense, distance from zero is also accumulated certainty on
average, yet bears no correlation with operators on operators.

These place different emphasis on different attributes yet are quantifiable
and reciprocate, being related to themselves via their group. One can be seen as
one of {O, T, F}. Zero can be seen as one of {C, T,O, F}. We find the topological
condition intact. True and False run off in a nongeometric perpendicular sense
to the rings into the making of strings. The sequences can contain rational pieces
of the rings, and these reciprocate by moving around in a loop as the program
runs as we multiply by other rationals.

The irrational digits are enough to determine in between if a sequence sud-
denly goes over to constant O or C or T or F for a distance equal to the distance
from the zero position to the beginning of the constant, then the state has not
changed half the time, and we attempt to consider it is as fixed. With any resolu-
tion this is not enough for certainty, and what we get is a sort of devil’s staircase
when expanded in a normalized notion of time from 0 to 1.

If we reach this half way point in string length, have we saturated the bounds
of its certainty? A different staircase would have a different parameter for divid-
ing, so it might or might not be reasonable. In most cases, it is simply the time
spent on this portion near 1/2 that determines the likelyhood that it is greater
than %50 certain. In our case, this only holds as exactly %50 up to about two
thirds of the real number line interval, and then it chaotically starts jumping up
and across again. This is still however a pattern.
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8 Logical Groups and Functions

With these logical groups, we can find the natural groups which generate the
desired functions. Elements of group structure are permutations, operations on
sequences, modules of bases, and group orders determined by auxiliary sequences.
The importance of this is modular functions that have variable rates of intersti-
tially distributed logical values. We can then describe a function and perform
relaxation to a descriptive function, by way of finding a standing solution of lim-
iting case. As a process we are attempting to find the combination of rigid and
fluid that yields the given desired nature of function. This is part of a larger
process, where we build base functions from natural properties of the ring. With
the other functions defined by this process, of the enumerative type, we can easily
take the power or limit of such a series or sequence numerically.

This is important because we can use the tools of mathematics in certain
cases upon these sequences to arrive at results of their interoperation. Note as
an example that the logical values operate as clarifiers in many times, the same
way that these statements do. Consider the union of all random sets. This set is
clearly open in the sense of the topological character of its boundary. It can only
form an open boundary as each subset in a limit has an isomorphic interval with
the same structure as R. The intersection is closed, as it is clearly not open.

The repetition of a function can indicate the product of the sequence with
itself has an on off nature, or one that converges to open or closed. The simplest
general function test is this; to see if a sequence converges under an operation.
Although, this is not a simple test. The above examples illustrate that we would
like to find a general correspondence for the construction of these logical sets.

In sum, between the rules on these rings and the rules of a logical system,
these are sequences of logical states with a group property, such that under mul-
tiplication or compositional intersection they have no multiplicative center, and
we arrive at the same result despite a linear displacement. They are as a union,
in an equivalence class, and represent a group of objects that transform similarly
under operation. We hope to create an algebra out of these operations. In this
paper we build from both sides to reach this goal.

These objects generate an algebraic structure with their groups. We are af-
forded more groups with more structure, such as the TFOC system so far, when
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we have more elements. Since the answer to this question is infinite, how the
group determines their multiplicative result is a point of study. We eventually
wish to generate polynomials to describe the system based on the group struc-
ture. Each set corresponds to a geometric transformation in a modular group,
corresponding to the structure of the rational point set.

Classifying all groups would be hopeless, so we focus on the interrelationships
that exist between different sequences as based on the elements of groups that
transform under the operators. These operate upon groups and groups created
from groups. The focus of this is on deciphering an operator’s transformation
rules upon an infinite collection of these groups. In this case groups of rings or
sequences. With this we build towards the infinite continuum of continuous logical
functions. By doing so, we focus on the emergent properties of logical systems
instead of on the underlying sets of logical state. This allows us a freedom
to construct arguments with a more continuous form of logic, by using these
sequences as the foundational objects. These are the rules that define their
interrelationships.

Uniqueness is primary, among sequences and rings, and is important in large
part because it suffices generate structure. We need this to to produce rings that
work with one another to produce unique rings or sequences. The results are
commutative in as much as the underlying group is. To symbolize a sequence by
a number can be done. It is many to one unless each sequence is unique. Also
useful is a chart with the number specifications and according logical values.
With each new sequence recall that order does matter, although net offset does
not. This is in part a property of having so many numbers, as copies of Q.

How these multiply is complicated, but can be carried out simply with a
table. The results are new rings, and how these rings work together, is the
foundation of the theory, when we work in higher dimensions. Rather than have
the objects specify the relations, the relations are used to specify how these
objects interrelate, and the viewpoint becomes less objective. However, the rules
are not in using these numbers exclusively, but are also used to define them.

We can construct strings by using many random numbers, together in a
sequence. We can also find ones randomly in convergent patterns. This constucts
a new random string by way of looking at the convergence to a new string. The
new string is one of 4N in total, with N the string length, each corresponding
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to a different configuration of symbols. We can see here that there is some
variability in the choice of irrational and rational numbers, when all that matters
is the sequence order. We find that there are as many sequences as there are
real numbers, as one sequence alone has ℵ0 entries. There are 4ℵ0 = ℵ1 such
sequences.

These as individual strings are in the number of (N). These are actually
strings of every kind, and with their sequence associated with a limiting point,
we find that each state sequence behaves as a real number. Since a rational
multiple of an irrational behaves differently with each rational. It is interesting
that the rationals all behave the same under the irrationals. This suggests the
division into two groups with different purposes. One rational point among every
set in the collection is allowed. This means there is one rational group as the
multiplicative identity. With this we find that since each string returns a number
under composition and converges to a number as a series, it is essentially a number
which behaves like a localized function.

But rather than being a function of something, it is more a variable at the
same time. These functions can change the functional behavior of other functions.
Inverses in this problem play a particularly important role.

It is potentially true this one rational point exists on a sequence and its
inverse, but then there are two, and in potenentially different locations. It would
be symmetric if they and their inverses were the same object. Then we have
only one rational point among all these series. We therefore have a multiplica-
tive identity, in an arbitrary random rational 6= 1. The laws, in breaking, have
reemerged delocalized.

If we consider rings with arbitrary sequences it is not clear what the inverse
of a number is. But if we take some examples of state rings, it becomes clear that
the reverse string with symbols reversed is not the same string. For example,
consider the binary expansion of .25 = .010000. Under interchange and reversal
we get .111101 = .953125. It is clear they are not related by a simple inversion
or subtraction relative to the period, but it may be something deeper, such as
reversal with respect to a circle in space. The numbers as rings, do not have a
clear inverse but the operators do.

Since the identity is the rational set, the conclusion is that for a number
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ring to have a reversed string, and true false interchange, or in other words, an
inverse, would require there exist an element in multiplication with it producing
an element of the identity. This is the radical to rational number operation which
is claimed to be unique, given a prime factorization of radicals yielding unique
irrationality as in a prime radical. From this, we can deduce their behavior is like
that of prime ideals. Given this is true, the inverse should exist for the numbers,
but only as the ring itself. It becomes, it’s own inverse. Not every one of these
numbers has this property of reachability, and thus not all of them have inverses.
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9 Series

Part of this arisese out of an effort to understand what happens to sequences
of rationals and irrationals as they converge to a number. Are some numbers
unreachable? Can a nonzero number be reached?

An example of a valid series is:

{ 1√
2
,

1√
3
,

1√
5
,

1√
7
,

1√
11
,

1√
13
, ...} (76)

Another is:

{ 1

2
√

2
,

1

3
√

3
,

1

5
√

5
,

1

7
√

7
,

1

11
√

11
,

1

13
√

13
, ...} (77)

These of course converge to zero. With:

P ∗ = {pn = P ol
l ...P

om
m : ∃oj : oj = 1, Noj = 1 : ∀n ∈ N : Pn ∈ P ∗} (78)

These sequences can be written:

{ 1√
a

: a ∈ P ∗} { 1

a
√
a

: a ∈ P ∗} (79)

The list of all prime radicals, and the list of all prime divisor rationals times
the list of all prime radicals. As an interesting example we could also analyze a
list of all numbers containing an odd power of a prime factor as radical divisors
for this list.

Pf,o = {pn = P ol
l ...P

om
m : ∃k : oj = 2k + 1 : ∀n ∈ N : Pn ∈ P ∗} (80)

Then:

{ 1√
a

: a ∈ Pf,o} (81)

Because the odd power of a prime factor and the square root add to an integer
plus one half power, this list only consists of irrationals. The outside or inside list
can of course be different when they each satisfy our conditions, or when both
are prime:

{ 1

a
√
b

: a ∈ P ∗, b ∈ Pf,o} (82)
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{ 1

a
√
b

: a ∈ Pf,o, b ∈ P ∗} (83)

Yet we cannot have both under the radical, since ∃oj = ok : Pj = Pk that is
the same in both expressions.

{ 1√
ab

: a ∈ P ∗, b ∈ Pf,o} (84)

Since both contain the same primes in an overlapping manner, this sequence
would not be a valid element in general unless we take Pn ≥ 7. If we translate
into a function as the constructor for the series then the summability of the series
means the function is integrable. This implies something interesting, if we carry
this one step further. The function can be convolved with others. For example if
we take two sequences:

{ 1√
b

: b ∈ P ∗} { 1√
b

: b ∈ Pf,o} (85)

And use them as two separate statements. By multiplying these rings from
7 onwards, we can obtain information about these series. Since we know they
converge to a rational, it is clear that their product does as well. Each is an
element of our ring, and we obtain information about numbers with prime factors
that include single or more odd powered exponents in relation to the primes
themselves.

Since a sequence or a ring may converge to zero such as this, such cases
are less interesting at answering a question between two irrational series as a
finite number would be. The limit of one is absent in the ring of operations and
statements. Because the multiplication of two numbers between zero and one
results in another in this interval this is indicative only of a fixed group of real
numbers, the open interval. With an open interval the limits to the boundary
although capable of being defined, are extendable in this limit as the set size
increases by open sets.

What kinds of questions can be answered by properties of these series?

Can we distinguish a fundamental irrational part multiplied by a rational prefactor?

Can we determine if a number is composite or prime?

Can we take the limit of two series simultaneously?
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We wish to create a set with numbers that have prime-like properties, in that
they exclude numbers with even powers of primes. These map back to rationality.

We look at:

P ◦ = {pn = P ol
l ...P

or
r :!∃oj : oj(1 + 1/m) = k : ∀k, n ∈ N : Pn ∈ P ∗n} (86)

And the difference between:

Am = {an =
1

P
1+1/m
n

: n ∈ N : Pn ∈ P ∗n} (87)

And the use of no factorizations leaving rationals:

Bm = {bn =
1

P
1+1/m
n

: n ∈ N : Pn ∈ P ◦n} (88)

These sets should be related, for prime factorization is fundamentally related
to factorization in general, and the second set is based upon the first. We can
then, compare convergence of their irrational decimal expansions. What concerns
us, is if the limit goes out of the domain: [0, 1). These both converge to zero so
they are ok. These help answer our uniqueness condition, unless there is none at
zero.

One should note that the individual irrational numbers in these series are
actually numbers congruent to the rationals. Our series of actual numbers are
seen to be convergent to rationals or irrationals, our operators cannot in general
be depicted as numbers, and our statements can be seen to be equivalent to
irrationals. Although we could construct a statement of statements, clearly, this
would require numbers in excess of the reals, R.

We can use the following (recursive) definition for the set of primes:

P = {r :
r

q
6∈ P : ∀q ∈ P} (89)

Or with the natural numbers:

P = {r :
r

q
6∈ N : ∀q ∈ N} (90)

This recursive property is shared. One can see in this definition that the primes
are not like the rationals but are more irrationals, in that each new member is
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exclusively non-divisible by the previous ones. This is analogous to the irrationals,
because there, we have a missing group, the rationals, that if two numbers are
divisible to a rational, then they are rationally related. If we restrict our members
to being irrationally related irrationals, then we have sets whose behavior is not
unlike primes.

There exist other interesting functions. Consider for instance:

1

a
√
f(n)

(91)

As we identify:
f ↔ f(n) (92)

F = lim
n→∞

a
√
f(n) = f(n) (93)

Now, a converges to:

a→
√
f(n) F → f(n) (94)

If f(n) is on R\Q plus Q then this is equivalent to R, and ∃b = 1
f(n) : b ∈ Q.

Then, both converge and both were irrational. They must have the same sequence
and therefore be equal. This holds for the whole real numbers and only at values
f(n) specifies. This holds if

√
p ∈ R\Q iff p ∈ Q

P : Q,P ∈ P. We can also define
functions strictly on R\Q, which is valid, but leaves out the rationals. Now on
R\Q we define a limit that behaves like the contained function:

F (n) = lim
n→∞

aop
√
f(n)→ aop =

√
f(n) (95)

The limit with aop behaves and acts like a f(n) from
√
f(n) among rings,

through this limit. It acts like a squaring operator. We can with group rules
determine how neighboring ones behave. Then, based on rules, we can find a
function behaving like any of a large variety, when we consider coupling the
functions to each other.

1

a
√

(b− f)(c− f)(d− f)
(96)
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A function of this variety is a polynomial in f . This function, must have
at least one unique root. No multiplicity in all roots guarantees that they do
not have (multiplicative) rationals of the form of a square for instance. These
numbers simply factor under a radical. Thus, we need at least one non-squared
prime factor in the denominator or numerator with a rational, to generate an
irrational number. To have no relation to the previous ones we find we need the
primes.

Other irrationals are ok, so long as they are not irrational roots that can
combine to overlap to make a complete rational. In other words, unique. If
fractions are always in reduced form and we use only primes, this is provable:√
p ∈ R\Q. Thus our functions take on all of: R : [0, 1). The irrationals give a

prescription for finding a sequence (infinitely non-repeating) for which the order
of elements is all that matters. This is only the circular order that exists with
unidirectionality. As a whole, these numbers behave like primes.

This is important for uniqueness with the product leading to a rational
if and only if their irrational digits match. They also match when they are a
rational multiple. This relaxes our constraint on the numbers if we want to
be able to generate these numbers to carry rational information. We would have
duplicates in our list of irrationals if any irrational were allowed in our list. These
numbers have uniqueness in number coming from the rings, and this property is
important. The ideal, and non mutual overlapping irrational set is generated by
the primes. This insures that we do not get a basis with repeats or rationally
related irrationals.

It holds
√
p ∈ R\Q if p ∈ Q

P : Q&P ∈ P ∗. At this level, we include all
fractions of one prime over another. By doing this we generate a maximal set
of numbers for which they are all mutually irrational. These numbers serve as a
basis, for which prime checking is done via multiplication, yet they do not give a
formula for the primes. These represent the series elements. If we arrange things
correctly we can find a limit function that is the conjugate half of the number
and therefore behaves as convergent to a function. This is interesting because it
expands our notion of what is possible with these sequences.

Numbers actually need not be prime. They may be coprime and possess
at least one odd power for a factor. This will satisfy reduced form as a radical
that is not rationally related to another in the set. But this must hold for all the
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numbers mutually, and so in the limit of set size going to infinity, we must use
primes as our set.

We use the sets:

α = {rn =
A

B
: n ∈ N : A < B ∈ P∗} (97)

β = {rn =

√
P

Q
: n ∈ N : P < Q ∈ P∗} (98)

To form:

Ω = {rn = al · bm : n, l,m ∈ N : al ∈ α, bm ∈ β} (99)

An alternative process for forming a set of primes without division is the
following set theoretic composition:

C1 = B1 = A1 = {1, 2} (100)

Then we form recursively:

An = An−1 + {n} ∈ N (101)

Cn = An/(An ∩ (An−1 × An−1)) (102)

Bn = Bn−1 + inf(Cn/Bn) (103)

This produces the list of primes:

B∞ ≡ P (104)

This is a way of saying that all numbers that are the product of numbers
are nonprime, and those produced not from products are prime. With this we
can produce primes by exclusion. This is a unique algorithm without the use of
division, and only multiplication. It is reiterative unlike a seive, but is like one in
that we generate all products of all primes in the previous list of primes and add
a natural number to supply it with natural numbers. If we find that n is already
included in a list of products then it is nonprime.
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10 Logical System

We can translate our logical system into a topological number system. We ac-
complish this by making the following mapping:

C: Closed Set
O: Open Set
T: In Set
F: Outside Set

This is by far one of the simplest way to translate the rules of this system
into a topological theory. The goal of this is to find an isomorphism between
the structure of irrationals and a rule set. With open and closed we can express
relations between numbers as relational, opening up our description of number.
We will instead use a different dictionary.

A set relation is specified by closed, with direction assumed by the direction
in which a string is evaluated. Periodic gaps between closed statements indicate
other sets that are contained within this set or sets that contain this one with
true, false, and open as states. Sets contain the sets ahead of themselves, and
are contained in those behind.

Another useful representation is:

C: Boundary
O: ’Set Unit’
T: True, unidirectional
F: False, unidirectional

This is useful for the definition of the sequences whose truth value is deter-
mined by evaluation as a whole, and not so much for the strings we will develop.
However, the set unit is a good concept, for it can be used to indicate sets for
which there exists an open relationship in one direction as we move along a
string. These sets being skipped by the logical evaluation allows us a degree of
topological transitivity.

For these strings, we will find the truth of a string nontrivial. If a string is
left right true false symmetric, then it is valid. Given that these are relationships
about sets contained in one another, they must be symmetric relationships to be
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universally true and hold for all elements.

With uneven strings (non-fixed set size) we can get interesting behavior.
There exist set relation sequences for which their infinite number admits metastable
strings with functional properties that nevertheless evolve with step number.
Functions that change the functional property of others. Since sets within sets
of this number (ℵ1) are a part of the rules of the sequence, there are a spectrum
of programs that are equal in number to ℵ1 in countability in the number of sets
and therefore may not be prone to the same laws as objects such as Godel strings.

These automorphic strings create a cyclic process whereby true and false
simultaneously indicate closure relations, sequences or orders of operations in
a potentially infinite heirarchy. These operations open and close channels or
add and remove boundaries, rearrange the space, and reorient the evaluation of
the string, by reorganizing the set relations to new true and false relations. A
beginning is chosen by an intersection over a union of rules.

The hypothesis is that there exist consistent infinite strings with no blank
connections and no unused spaces with these properties known as free strings.
These may not exist because of Godels theorem, however, they have an admitted
possibility of existence, because they do not question provability, and are fully in
ℵ1.

Within each set is the pattern, of the way and rules by which to consider
all other sets. The order of operations is determined by a method of greatest
constraint.

We explore all relevant levels (which can be all) to reach a beginning node,
or set of equivalent beginnings, and then take the first step. We re-evaluate the
entire object to determine where to begin again. This can make for a very chaotic
playout of rules, and allows for complex reiterative behavior.

Consider the following string:

...TCT... (105)

This is a single empty set connected twice over to itself. Now consider the
following string:

...TCTFCF... (106)
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This is two sets, each containing the other, with one true and the other false.
Since we have the reverse direction to work with as well they say more. The first
set to the left, claims the set at the right is true, and that itself is false. It also
claims its relation as a set item to the set at right is true and to itself, is false.
The second set to the right claims the set at the left is false, and itself is true. It
also indicates it is a false element to the other set, and true to itself. With this
we can see that we have going left to right, the set at right as true within the set
at left, and itself containing this set as false. We cannot support this conclusion,
and hence this string and this situation is a paradox, and a rather involved one.
One can see if one draws these sets and how they connect, that a paradox is
essentially a logical Klein bottle with true and false on the same surface.

One question is if a statement that declares these two false can disentangle
a paradox. Consider the following string, where a paradox is ’contained’ in a
larger statement that proclaims it as false. In this way we can see how a set that
contains another can perform an operation so as to disentangle a paradox, and
reach a refined set of sets with minimal changes in the string.

...FFCFFFCFTCT... (107)

Since both having False applied to them is one consistent outcome, and the
others are not, this operation resolves to application of the new set to the two
previous. Using the operator table, we find that false and false go to open instead
of true in this non true/false exclusively constrained system. This string becomes:

...FFCFFOCOFCF... (108)

Since Open is open to either state, this is the final string. Now, set one, our
set that declares the relationship of the other two false, contains these as open
and false, and is contained as open and false by two elements each in the other.
This evaluation reduces our string by taking False to open in the contained false
set. When the second two flip and false goes to open, the original set does not
change. If it simultaneously changes, we get another paradox.

It takes a greater number of steps to reach an end state consistent string
with a greater number of initial group relationships, and these end states are not
always reached. When they are, we know the original system is solvable. As with
many systems there may be more than one way to reach a correct answer.
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There are again two sets of logical values for a set. With the direction of
evaluation, the values behind indicate the set possesses a given property to those
sets that contain it as an element, in reverse order. The values ahead indicate: the
sets it contains as elements possess this property from the evaluation, in normal
order (along with the direction of evalutation). There are two complementary
ways to evaluate; left to right and right to left.

With this, we can see there are two countable infinities for sequences. One
is the set nesting level, and the other is the sequence length. The sequence is
now a list of their somewhat transverse relationship; one where we look at the
sequences created by sets within sets. This is seen in both directions, from the
very small interior set, to the very large exterior set. These sets are contained in
each other, and hence, we are really working with an isotropic set, one without
inside or outside, and fully hypothetical.

Since for now we assume every T ↔ F is a bisymmetrically true / false
relation, these are identified with sets. They need application as a relation.

We can assume that the elements between closed apply to groups and closed
we may leave as solitary. We can get a relation of the set to the sets so contained
in a set. This relation is a hypothetical union and intersection in some combi-
nation, between all sets. Since this is the result of the union or intersection, the
implication of this reversed implicates the ones that in the union or intersection
produce this result. Since they are contained in each other it is in general the
intersection. This is essentially a function as implied by a relation. They are in
this sense the two inverse elements under the intersection. We do not know which
precisely applies however as this operation is not unique under the inverse.

An Open indicates exclusion of sets from a set inclusion when we begin at
a set boundary. The sets relation under intersection is the sequence to the front
of Closed. These can contain closed ends or whole sets. Only with whole sets
can we have a complete union or intersection. The boundary is irregular as these
are based on irrational numbers, so, instead, we cannot guarantee we have the
same point referred to with a mutually closed boundary, and this is excluded
from becoming open when we use multiple sets to find the digits of an irrational.

We assume from this a few things: Open is equivalent to a set connection
which leaves the set items intact. Thus open is equivalent in being exclusion

56



Logical Functions on the Real Numbers

when we use this symbol to skip groups, as these items are on the same level and
outside of consideration for determining the true and false relations that exist
between the other elements with definite truth values. Although, open is flexible,
and may change type. If we get X as a state from for example two directions,
and these each are implicative of a mutual connection, we can often get X.

Now, lets look at an example that has mathematical relevance. This is the
Fibbonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21... (109)

The recurrence relation is:

Fn+1 = Fn + Fn−1 (110)

{F1, F0} = {1, 1} (111)

With the set operation of addition we can form this sum easily, one number
for each set’s number of contained set’:

...CTTCTTCTTCTTCTTCTCC (112)

Results in the sequence of set numbers as:

...21, 13, 8, 5, 3, 2, 1, 1 (113)

This repeating pattern of: CTT is enough to keep the sequence going, after
an initial CCT in reading right to left. We see the first indications that as
the number of sets increase the space for program type code left over becomes
smaller. This is with a fixed length sequence. With an infinite sequence we get
the behavior of our reals. As a finite one becomes smaller in this context it
becomes a sequence. There exists a spectrum of behaviors of these objects from
a string to a ring. The spectrum goes around in a circle to reconnect to itself, in
that these are the same objects, only in different guises.

Hypothesis: there is a way to write a seqeunce for the primes. Note that
this is one of a non recurrent nature except in its nature of asking a question
of divisibility repeatedly on the natural numbers. In general, our logical system
reduces to the production of logical functions. With the following diagram notice
a logical statement exists by the set relation mapping True to False as we move
outwards.
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Going inwards, false in this logical function gives true, and going outwards,
true in this logical function gives false. This logical function is taken as locally
bisymmetric in this manner. The logical function is defined in both directions
by this, and actually exists with at most (3N)N relationships. This is but one
among many parallel relationships. A statement is implied:

T = φ(F ) F = φ−1(T ) (114)

These φ−1 are determined by the logical comparisons. How do we find in
general the φ when only given T and F? i.e. there could be multiple interme-
diate operations in general. Our question is: how, with the inverse union and
intersection, do we determine uniquely (and is it possible to) the set of:

∞...φABφBCφCDφDEφEFφFG...∞ (115)

This is the logical function, contained in these interrelationships. When we
take the limit of the number of statements to infinity it becomes continuous.

These statements or sequences are infinite in extent, and overlap like fibers
running in both directions to meet at infinity. They also come in an infinity of
different parallel statements with each infinite in extent, overlapping along their
length. They are not limited to one dimension when we have them contained
in each other. As a graph these are free in three dimensions, as any to any
relationships. Recursion can be employed at any level. Question: Can we form a
paradox in one direction in this string system?

As a comparison, consider the following values:

T : ∀ ∈ A = ∀ ∈ B (116)

F : ∀ ∈ A 6= ∀ ∈ B (117)

O : ∃ ∈ A = ∃ ∈ B (118)
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These are also compatible with our set notions. Our logical functions come
out in interesting ways. For instance, the long chain above is just one of many.
The number of sets is large, and varies depending on the structure of the sequence.
The most interesting thing about these sequences is they are left right symmetric
with various periodicities, with a logically consistent condition on their truth
values. This implies that set A is symmetric with set B at the (n,N − n+ 1)’th
(from each) unit with respect to inversion of which contains which. We arrive at
this by going from one set to the next or previous and meeting. We find elements
must agree between the two since they are single symbols.

The following is the condition as we go from a position at center (A) to one
at the right (B):

φmn = φm−1N−n+1 (119)

φmN−n+1 = φm−1n (120)

n: indicates the sequence repeats every n sets with N the set length. These
(n,N − n + 1) are the distances to the points where the function must find
agreement with the previous set along the sequence. Lets say we have 8 sequences:

φ = {φ11, φ21, φ31, φ41, φ51, φ61, φ71, φ81} (121)

With only eight, we would find φ1 dual to φ8, φ2 dual to φ7, φ3 dual to
φ6, and φ4 dual to φ5. Each has an offset by one, and they form a net on the
periods of the ring. Up to half the period the sequences come out dual to those
with a period the interval minus their period, when we evaluate in the opposite
direction.

If we divide into odd and even sets then this construction separates into
mirror images. Now, M equals the image and M−1 equals the mirror image.
These read the same one direction as the other. To apply this understanding the
mutual relationship of which is contained and which contains is inside/outside
symmetric locally and of a symmetric local logical value. If the sequences are
validly defined on even and odd sets, it does not matter what these sequences
express. The sequences are inside outside symmetric when M = M−1.

A topological question is sometimes devoid of preference in representation
to what is contained, and what is the container. Also, the given that logic be
symmetric with respect to time, admit a structure where reading right to left and
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left to right should preserve the logical meaning of the statement. This system so
far preserves this aspect of logical structure. We have an identity when: A ⊂ B
and B ⊂ A so that A = B. This is the symmetric interpretation of the string, and
as an indication of having an identity these contain each other. This symmetry
allows us to use symmetric implications in places, or to guess what the logical
operations were that lead from one relation to another. We can use this symmetry
to model a logical function, of arbitrary length and complexity. Sometimes these
are ones of infinite length, when we use other recursive elements. A question, in
the language of logic.

Ahead, every group indicated is a group contained in the previous, with
a logical value so indicated by the group with the logical values immediately
succeeding it. Behind, every group is a group that contains this group, with a
logical value within this group given in reverse order to the evaluation. In this,
a group in the center is an element of the sets that come before it, and after it
are the sets that are within it.

Sequences and rings that go both directions are symmetric sequences or
rings. If we were to take every nth item of the set we would find them covered
sporadically by the actual groups of the permutations of the sets. In other words
if we take the nth group, and then the nth group again, and repeat, we don’t
cover all N groups until we have gone around at most N times. In some cases
we do not cover all.

We do however have a symmetry. The relevant numbers are the period n,
and how they line up with the period N − n+ 1. The plus one is from counting
our start and end. Our question is, which lengthed strings and for what ratios
of N or N − n+ 1 to n do we find our rules satisfied? As well, what is the base
function generated by agreement between these? The resultant strings are left
right n/(N − n+ 1) period symmetric. These are the encloses/enclosed inverses.
They have as well two different periods in two different directions as the same
sequence. The same sequence has two periods specified by the reiterative numbers
for n and N −n+ 1 to get back to where it’s starting point is. These are our two
periods:

Left: Period: n and covering number: LCM(n,N)
n

Right: Period: N − n+ 1 and covering number: LCM(N−n+1,N)
N−n+1
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These must satisfy the rules for φ to agree and have commensurability. How
do these functions change as n and N do? Irrational numbers, which we can
model our functions off of have many periods.

Given the previous, the two patterns match up, although out of order, when:

LCM(n,N)

n
=
LCM(N − n+ 1, N)

N − n+ 1
(122)

As an example, consider N = 5. For n = 1, 5 they are unequal. For n = 2, 4
and n = 3, 3 they are equal. We find they are equal when:

1.) N is odd
2.) n and N − n+ 1 are coprime to N
3.) when N is prime, all n other than N and 1 function

This only works therefore when the two lengths that add up to the total,
tile this total in such a way they both cover equal numbers of sets. This is when
their numbers are coprime each in pairs, to the total number. Their sequences
come out in unique ways, but are individually ordered. These are also capable of
indicating a sequence of operations.

Because of the symmetry requirements, the interval is symmetric about the
midpoint. In between, sequences must be symmetric about N/2 such as in the
following:

...CTFOTFFFTOFTC... (123)

These are the points that must agree, going to the left or right of N/2, how-
ever, order does matter. The ordering depends on the ordering of the multiples
in a pattern relative to the other patterns in an N sized modulo space. This
indicates that the sequences are different, depending on the size of the space and
the number of sets, and because the ordering of the digits in relation to the string
is unique with each pattern.

These can have very different structures. One which goes every two, in a
space of nine, and one which goes every eight in the same space, match up at
their common multiples. These are 9,8,7,6,5,4,3,2,1 for eight, and 2,4,6,8,1,3,5,7,9
for two. One can see the order is backwards on the set of sets in the first case,
and we have evens and odds in the second, in ascending order. These represent
transformations of the set into different orderings, and when they change they
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have interesting results. The counting begins from one of two closed set relations,
or two boundaries, in from each side. Only those sequences that have the same
period of total coverage in n and N − n+ 1 have agreement.

For another example we look at those patterns for five elements. The fol-
lowing is a depiction of the sequence of sequences landed on, as we rotationally
cover the interval with sequences.

1 2 3 4 5

1 1 2 3 4 5

2 2 4 1 3 5

3 3 1 4 2 5

4 4 3 2 1 5

5 5 5 5 5 5

This indicates 4 and 1 and 2 and 3 should agree. The above gives their
relative ordering. These numbers are of the whole sequence of sequences and
indicate groups of spaces covered. These further match up, but out of order, and
generate sequences from their mapping. This is so long as we associate 1 and 1,
2 with 2 and so on. By doing this we satisfy the group rules for their association.
This establishes a mapping. We can use this to understand what the sequences of
the functions are in terms of their natural mapping from these modulo sequences.

Since these are the only ones which match up, the fives are out. As in general
are the N . We get one of these tables for each N . Sometimes, as with nine, most
do not match up and some do. The ones which match up are 2 and 8, and 3
and 7. The other numbers are non mutually prime, and therefore, ones for which
they become commensurate at some number of spaces, but not in a manner such
that they cover all spaces.

The conditions above ensure incidentally that in all cases where we have
a matching condition between the lowest common multiples over their periods,
we get a number that fully covers the set. Their coprime nature does not hold
mutually, but does hold for each as compared to the total interval. They may, or
may not be coprime to each other.

The ramifications for a completely coprime set imply total covering of size N
for all bases. This is however not possible with all natural numbers as all natural
numbers are not all mutually coprime. We are struck with a case of two parts to
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a sequence, its ’agreement’ conditions, which come at periods n and N − n + 1
and correspond to numbers coprime to N , and another part; those that have no
agreement condition.

These two parts, bear a striking resemblence to the parts of our numbers
representative of sequences, the rational or the periodic, and the irrational or
those without agreement. These without agreement still have a mapping, as a
potentially smaller set of potential logic values.

If we choose to interpret this system as one not of equations but instead, as
what a sequence represents (i.e. a permutation of 3), then we move a step closer
to understanding the true meaning behind these numbers.
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11 Group Structure of the Irrationals

A faster process exists only if we can use the extra information of r =
√
pq based

upon it being a square rooted two factored product of primes.

Let:

αP = {rn =
1√
P

: n ∈ N : P ∈ P ∗} (124)

Be the list of all prime inverse radicals. Then take all products as: αP ×αP .
Then multiply by the unknown irrational, or inverse root of a product of primes
or number. This seive will produce all factors without powers as rationals for all
the prime factors a number has. This is merely a straightforward seive.

If we define:

ΩP = {rn =
A

B

√
P√
Q

: n ∈ N :
A

B
∈ Q : P,Q ∈ P ∗} (125)

This is the coset of the irrational prime radicals under the rationals.

Then, our question becomes: is αPr ∈ ΩP ?

There is a unique answer based on the given information alone. Yet it seems
non-reversible. We find each radical produces with the composite a rational
multiple of the other. This means if we know one, then we know the other.

Letting:

{α =
1√
P
, β =

1√
Q
, r =

1√
PQ
} (126)

Then:

αβ → r rα→ Q[β] rβ → Q[α] (127)

We produce:
..., αr5, βr4, αr3, βr2, αr ∈ Q[β] (128)

..., βr5, αr4, βr3, αr2, βr ∈ Q[α] (129)

We find that these must be related numbers.
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If it were strictly linear this would not be certain. We need the relationship
between the groups:

Q[α],Q[β],Q[r] (130)

Then:
Q[rα] ⊂ Q[rβ] (131)

Q[rβ] ⊂ Q[rα] (132)

Thus:
Q[rα] = Q[rβ] (133)

Thus, these are the same group of numbers, and we should find that either
is a member of the other’s when taken together. These are in this sense each
contained in the other. We are afforded this as:

r = αβ (134)

α, β, r ∈ R\Q (135)

When we multiply by an irrational in the set of composite irrational factors
we arrive at a rational times an irrational. The numbers line up to the other
irrational for the rest of the composite structure. We get this behavior because
multiplicatively the rationals are the multiplicative identity mod even powers.
These three form a group of irrationals that transform into each other under
multiplication, when r is a product. The three irrational groups from multiplica-
tion are equivalent:

Q[r, α] = Q[α, β] = Q[r, β] (136)

For now it is sufficient to explain the behavior as two producing the other.
But what we find is that they possess a multiplicative and division group sym-
metry. These numbers are also their own inverses.

This makes sense given our mirrored rational construction to make them
independent of multiplicative offset. The equations can also be recognized as:

Q[αβ, α] = Q[α, β] = Q[αβ, β] (137)

It would not have β if it did not have αβ and α. There is no two fold
symmetric group, but there is a one. These three groups are equivalent, but one
comes from the product of two of the others. This makes sense.
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As another example, what happens when we have three symmetrically?
Then:

Q[γ, α] = Q[α, β] = Q[γ, β] (138)

And we find the elements transform rotationally. This is a group, and the
last is as well. For now, we have a group table, which results in the classification
of the group law as that of a permutation:

Q[α] Q[β] Q[γ]

Q[α] Q[α] Q[γ] Q[β]

Q[β] Q[γ] Q[β] Q[α]

Q[γ] Q[β] Q[α] Q[γ]

These are the permutation groups, which illustrate the irrationals behave
like the roots of a polynomial. Is there a rule that allows us to obtain the two
α and β with only γ? Since we have for instance the product of two irrationals
for a number we wish to factor, and we multiply by a given irrational, and
then test against other irrationals. We can find both the rational part in the
first expression and the irrational part, given that we know which irrationals
we tested against, and what the output rational is. This however requires two
multiplications, because without this, we do not know from the previous rational
times an irrational when we have the correct first irrational.

One can see that this requires multiple irrationals to determine the compos-
ites, and it requires equal in number multiplications to the number of factors.
These only produce the factors, and not the degrees, but they are well suited to
this task. It does however require a more sophisticated algorithm. One based
around fractional powers of all inverse primes.

The results of:

{α =
1√
P
, β =

1√
Q
, γ =

1√
PQ
} (139)

Are under multiplication:

α β γ

α 1
P ∈ Q γ ∈ Q[γ] 1

P
√
Q
∈ Q[β]

β γ ∈ Q[γ] 1
Q ∈ Q 1

Q
√
P
∈ Q[α]

γ 1
P
√
Q
∈ Q[β] 1

Q
√
P
∈ Q[α] 1

PQ ∈ Q
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Under multiplication of elements some of the symmetries are similar to that
of the Klein four-group table which for α, β, and γ would be:

Q[α] Q[β] Q[γ] Q
Q[α] Q Q[γ] Q[β] Q[α]

Q[β] Q[γ] Q Q[α] Q[β]

Q[γ] Q[β] Q[α] Q Q[γ]

Q Q[α] Q[β] Q[γ] Q

As well, one can see that four of the irrational products occur in the cubic,
as a total of five because one is duplicated. This leaves only the coefficients α
and β added.

Consider the full set of permuted rational numbers as radicals whether they
be less than or greater than one:

{

√
P

Q
,

√
Q

P
,

1√
P
,

1√
Q
,

1√
PQ

,
√
PQ,
√
P ,
√
Q} (140)

These form a group, because each product maps to inside the set, although
they produce the product list:

{P
Q
,
Q

P
,

1

Q
,

1

P
, P,Q, PQ} (141)

This also forms a group, with none mapped to outside the set. Our algebraic
response is that the irrationals mirror over each other like the solutions of a
polynomial. A better set to take, is all irrationals between zero and one:

{

√
P

Q
,

1√
P
,

1√
Q
,

1√
PQ
} (142)

We will find this set for three primes as having similar properties to that of
the prime factorization set:

{ 1√
PQ

,
1√
QR

,
1√
RP
} (143)

Any one multiplied by the other two results in a multiple of the other.
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We can also consider the cubic:

f(x) = (x− 1√
P

)(x− 1√
Q

)(x− 1√
PQ

) (144)

Rationals as products, are the ’multiples’ of an irrational. There are an
infinity of these. It would be interesting to come up with the analgous geometric
construction that leads to and from these numbers.

Considering our polynomial in expanded form:

f(x) = x3 − x2( 1√
P

+
1√
Q

+
1√
PQ

) + x(
1√
PQ

+
1

P
√
Q

+
1

Q
√
P

)− 1

PQ
(145)

Looking at the quadratic we have:

f(x) = (x− 1√
P

)(x− 1√
Q

) (146)

f(x) = x2 − x(
1√
P

+
1√
Q

)− 1√
PQ

(147)

This quadratic also possesses three of the same terms as the cubic. Rewriting
the polynomials we obtain:

f(x) = x3 − x2(α + β + γ) + x(γ + βγ + αγ)− γ2 (148)

f(x) = x2 − x(α + β)− αβ (149)

Can we factor these polynomials, or their difference? With how many pieces
of information can we factor them such that the results are still in the irrationals?

Presumably an existant irrational factorization by a lower order quadratic
would mean that the roots are shared as a part of a larger cyclic group. In this
case two would be symmetric with respect to the third. This division means
that the two polynomials would share a group and a factor consequently over
the prime inverse radicals. If this is the case, we would like to use polynomial
multiplication or division, which would be defined with different properties than
the usual polynomials.

Two of the roots would behave rationally together, as compared to the rest
(as they factor rationally). A product of two is a rational multiple of the third.
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We can see the isomorphism is one of the rational numbers being the identity.
How is the group structure of these related to that of the polynomial groups.

Consider the following group again:

{α =
1√
P
, β =

1√
Q
, γ =

1√
PQ
} (150)

{Q[α],Q[β],Q[γ]} (151)

What is the group relationship between these? These overlap such that
they are equivalent, but only when multiplied, it is not exactly the same as when
three numbers have a least common multiple, and stay in the integers, but it is
analogous. In this case, we cannot leave the rationals, so each element is its own
group of numbers.

We would like to use the extra information of composites for generation of a
larger basis. With rationals and a binary division, is this enough to saturate the
system with rationals, sufficient to factor all composites? What is the structure
of this basis?

Suppose:

γ = αβ ω = a · b (152)

With:
a, b ∈ Q (153)

Abstractly, we would like to know how to find a or b and α or β when
resolving:

δ1 = ααβ = α2β = aβ (154)

δ2 = ββα = β2α = bα (155)

As:
α2 → a ∈ Q (156)

β2 → b ∈ Q (157)

After we take αγ and βγ how do we recognize a match? We can simultane-
ously compare the α2 or β2 and divide by the magnitude of these squared to find
if there exists an α or β such that when applied in reverse order:

βδ1 = aββ = aβ2 (158)
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αδ2 = aαα = bα2 (159)

Leaving:
ω = βαγ = αβγ = a · b (160)

With:
a, b ∈ Q (161)

Does there exist a general way to get this process at all powers as in a modulo
function? For this, we need a prime seive with inverse powers to unlimited degree.

One question we will ask is: Is there any regularity of the digits of the
irrationals?

The study of prime irrational roots (inverses in [0, 1)) is equivalent to the
study of the symmetries of polynomials and polynomial roots and root behav-
iors when the group structure of coefficients is examined, for small fundamental
polynomials, as these roots behave cyclically as a permutation and are numbers
as well as objects in a group. The symmetries of the irrational digits specifically
have to do with the symmetries of these polynomials, or in the case of three, to
cubics. These polynomials represent all combinations as statements.

If we can produce a group law by which certain irrationals (genuine irra-
tionals) possess a relative pattern, that allows us to determine if they are a base
in a prime or multiplied by a rational it would be interesting. These two patterns
come in as a radical prime and a linear pattern with the rational primes. We
would like to be able to tell when an irrational is multiplied by a rational. For
this, we must multiply by known rationals that form a group. Given these could
be numbers that share factors, we have common groups between them, forming
a regular polygon.
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12 Geometry of the Irrational Numbers

We need an answer to the question: What geometry describes the digit sequences
of the irrational numbers? What groups determine these, and how do they oper-
ate? With what symmetries and what interrelationships? With what limitations
and what similarity to production of numbers for groups? And, with what ram-
ifications for the numbers in general, the rational and the real?

Part of this is to recognize the link that exists between irrational digits of
a sequence and the properties of the sequence as a whole. This local to global
property seems absent when we have the multiplicative property of sequence to
sequence, but there is still great importance to understanding this connection.

Given we have an irrational the digits go on forever. However the question
becomes, do we reach a point where the ability to differentiate a prime in a
composite is obscured or lost?

The following sequence is a depiction of the development of the structure of
our set:

α→ Q[α] (162)

β ∈ R−Q[α] (163)

γ ∈ R−Q[α]−Q[β] (164)

And so on.

If our set is N elements long, or with N → ∞ do we saturate R? Or, do
we need a (countable or uncountable) infinity of such sets? Can we saturate this
limit with this process? One can see, this process can aid us in getting infor-
mation about the structure of R. The prime numbers satisfy this construction,
and are countable, therefore we cannot saturate the reals with such a sequence.
Thus structure of the irrationals is therefore truly transcendental, however, it has
limitations.

There is also a notion of distance we can construct. One can form a cross
ratio of points. But in what sense does this differ for irrationals? The digit
space of the irrationals is a pattern, but a strange one. Here we find something
interesting with the cross ratio. This has four ways to equal a rational and behaves
as the product of two distances. Clearly, multiplication preserves the cross ratio.
We can also use log for the local distance between our digit expansions.
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The notion of distance is:

log(
p

q

r

s
) = log(

p

q
) + log(

r

s
) (165)

This product is also the form of a cross ratio. Since the cross ratio is pre-
served, so is the product of distances, if p, q, r, and s are in turn distances.
With this we can see that we could have p and q or r and s both rational or
irrational. The number of possibilities is the same as what we get in our logic
table. This shows that for two irrationals whose difference is a rational and two
rationals whose difference is a rational that the product of the distances from one
irrational to a rational and the remaining irrational to a rational are a rational.
This is so that the cross ratio is a rational.

An example of the cross ratio with a variable quantity is the following:

l = q +
1√
5

(166)

m =
1√
3

+
1√
5

(167)

n =
1√
3

(168)

o = q (169)

In:

χ =
(l − n)(m− o)
(m− n)(l − o)

(170)

This results in a polynomial for the cross ratio:

f(q) = −5q2 +
10√

3
q − 2

3
(171)

Such that the cross ratio is zero when:

q =
5±
√

15

5
√

3
(172)

What if a set of three irrational numbers each carry cofactors with the
others? Multiplication of any two will reveal the shared element squared, times
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the other number. One can picture constructing a way to find a match between
a potential product of two unknowns by multiplying with these and looking for
a prime or irrational factors that relate in a group structure. Can we always
form these kinds of nets to discover the numbers in a composite? If we could
form these, we could look for intersection among their sets, thereby arriving at a
common solution.

We would also like a way to find common factors arbitrarily, so as to factor
numbers. To have a three long sequence of numbers the objects must have three
shared parts. So, they each share a common factor. This is with three primes
effectively. This means if we have a group, we can use properties of this group,
to reduce prime irrational radicals to a repeating pattern notation.

There is a difference with many. These irrationals form the vertices of a
polygon in their group. One can imagine moving along the series with the motion
of a triangle between them hence determined. Then, given the way that:

αβ → γ (173)

βγ → α (174)

γα→ β (175)

The notion of the irrationals of two series reflecting such that they reflect
off one another in multiplication, or that they produce each other, is clear. This
is a symmetry with more than a superficial resemblence to their digits. The
structure is preserved with these numbers as they move through their series,
indicating this is as well a local symmetry. What operation is this, that preserves
this relationship between their digits, and what is the general symmetry of the
irrationals?

There does not exist a unique natural isomorphism from the numbers to
the sequences or vice versa. But, we can use the natural conversion isomorphism
that exists with the irrationals to the rationals, to create operators that come
attached to numbers with a form symbolized by the following:

1

4
√

37
(176)

Then, we take the rational part to be the program structure, and the ir-
rational part to be the number part. Those sequences of the local variety are
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of the form of an α permutation and are periodic in the irrationals. While the
longer full sequence is rotationally free, and one that we get by throwing away
the rationals is the ω permutation.

This use of radicals indicates that for the most part we deal with operators
up to the square only:

xn : 0 ≤ n ≤ 2 (177)

The picture revealed is of irrationals that relate to each other by groups
that extend backward upon the digits, generating them as we come back from
infinity, as parabolic surfaces extending through the numbers. The intersections
of these parabolas generate products, fill in the space of numbers, and indicate
the natural measure of the space of the digits of the irrationals. If there can be
such a concept as number dimension, we would like to find the way that fractional
powers relate to this.

Going back to our set:
{α, β, γ} (178)

We find the sequences produced by these to be of the form of recursion
relations:

F [n+ 1] = G[n] · γ (179)

G[n+ 1] = F [n] · γ (180)

P [n+ 1] = P [n] · γ2 (181)

Two numbers repeat with a period of two and one with a period of one. We
can treat these like a differential equation.

A fundamental question now is: What properties of operations are preserved
under a radical function?

It appears that in even powered factors being absent from the theory, these
remain hidden and in doing so become points of uncertainty in the factorization.
They make one non unique unless we go deeper, to a more sophisticated factoriza-
tion. But this process has a limit. The rationals of a randomly chosen irrational
not only obfusicate its character but appear to make the fundamental theorem of
arithmetic break down with irrationals, although they are well ordered, like the
natural numbers.
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These radicals are just as legitamate as parts of general numbers. We only
get the odd powers in the factorization so far. We need all powers of all factors
for completion. We can do this with repeated factorization, if we can isolate
and divide out, or multiply out, the radical, and separate it from this rational.
We follow with another factorization upon the remaining irrational part. This
repeated process returns all factors, if we can begin the process to start.

Given the way the irrational digits are somewhat homogeneous, and the
rational discrete and regular this may be possible. We can pick up on such
rational patterns, by multiplying by a sequence of rationals until we find a return
to homogeniety, of minimal degree. With many numbers in the composite, we lose
accuracy over the product of their digits and can no longer factor uniquely. This
is what we mean by obfusication of digits. With this, prime factorization would
not be unique for irrationals in general. The groups in a random irrational quickly
exceed resolution to factor. Finally, given the order of the size of the infinities,
a list of prime factors should be constructable, and this means countable. With
uncountable infinities we clearly cannot begin a factorization on all numbers.

It appears that the answer as to where the digits in an irrational come
from can be answered quite simply by examination of the groups they share with
other irrationals. A class of primes can possess one characteristic with all of
its members, but it may not saturate the set of reals. These digits may appear
random because irrationals depend on primes for which there are no factors and
they consequently possess no subgroups.

All small factor number irrational digits appear to be parametrizable by
the groups of irrational numbers contained within them, even though they do
not possess a regular structure. For instance one irrational among three mutual
products is certainly related to the others. These digits appear to be most simply,
indicative of regular sequences in the irrationals of their composite. And although
not literally giving the structure of the digits, do so by way of the group structure
with individual digits. A hint is given by the varieties of successive product. For
the factorization problem some such sequences are:

αγβγαγβγαγβγ... (182)

αγαγαγαγαγαγ... (183)

αααααααααααα... (184)
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The digits of the irrationals are hypothesized to be a construction involving these
sequences, in the way they correlate to the group structure of the prime radicals
under question. It is certain that the relationship of the digits in three mutual
irrationals is determined by a group law.

Irrationals are the first numbers for which we get a scaling independence of
digit representation in that we always have an inhomogeneous pattern of digits.
We have an endless pattern for all but one point in the whole space of irrationals,
zero. The pattern fundamentally changes when we use inverse radical primes
with one another in leading to a rational. The structure changes from infinite to
finite in a very short interval.

We would like to for these purposes show a comparison or limit to resolution
exists at a threshhold before we reach the full irrationals given by a relationship
of the groups of prime factors to the partition function. These give limits on the
distinguishability of irrationals.

Also of importance is the structure of the set sequences. The number of
equivalently sized sets is: (

N

n

)
(185)

The number of sets within sets without counting self loops is given by the
ways to count all lengths of all sequences of ordered items and a partition. An-
other way to describe this is as of choices of super set and subset among N sets.
This is the sum with n from 1 to N of ways to choose n among all N multiplied
by the ways to choose the remaining N − n among all N . for:

ρs =
∑
n

(
N

n

)
·
(

N

N − n

)
(186)

This has as a sum:

ρs =

(
2N

N

)
≈ 4N√

πN
: N →∞ (187)

These are the central binomial numbers:

ρs[1] = 2, ρs[2] = 6, ρs[3] = 20, ρs[4] = 70, ρs[5] = 252, ρs[6] = 924... (188)

The ratio of the number of new enclosed sets to the previous total number
of enclosed sets is asymptotic to four from below.
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13 Logic Revisited

The logical functions established by this paper, the logical states, and the pro-
cessing of numbers are all intended to be an easy way to construct, modify, and
manipulate numbers as well as interrelate and interinvolve. These are all ’softer’
operations than we are used to in mathematics. The numbers can be gradually
developed, meaning, we can design algorithms that slowly fill in the digits of a
number.

Note that the covering complement is the operation that takes Open to
Closed and vice versa, while the evaluation or truth complement is True False.
We need two pieces of information for exclusion of middle thirds in true false.
We need four pieces of information for exclusion of middle thirds in closed open
true false. The operators therefore have a different correspondence to numbers
than in binary.

A generalized function would involve using closed and open as group opera-
tors, as set expand and contract, and as quantifiers of statements in processing,
as well as representatives of the group. But theoretically we have a limited set of
sixteen operators. Just how general is this set and this theory?

We have shown ways of deriving self similar sequences such as:

Golden Ratio
Exponential Growth
Fibbonacci Sequence

Each successive term is a composition of those previously, such as a sucessive
product, and thus many limits are possible in the broader context. We can
include objects in the set of these tables to be the whole of a set of numbers.
Or, even characteristic of a certain class of numbers such as prime bases. As a
consequence we can do arithmetic and inferences on sequences. Can we prove
that the irrational digits are given by an expression which has a property of
uniqueness in the prime factorization as we can treat the natural numbers? In
summary, for sequences and rings, the elements are countable and of order ℵ0.
For these both as well, the sets (in combination) are uncountable and of order
ℵ1.
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14 The Circle as a Logical Fractal

The circle is a logical fractal. It has a measure of e and a dimensionality of π. It
is a closed two dimensional fully symmetric figure. Here we find that geometry is
now the source of logic, in that geometry is to topology as a logical system built
from an instance is to all of logic. There exists a geometric language and logical
system for each corresponding geometric space.

Is e, implicative of the natural measure of the base of a curved or embedded
space, with π, the natural dimension of this space and with i as true, and −i as
false, relative to direction?

As a unique number, or prefactor for the natural dimension of this space,
i =
√
−1 is then a continuous motion in the direction of the open space, to where

the function goes tangential to itself reaching towards a form of self completion.
Consider’s Euler’s equation:

e±iπ + 1 = 0 (189)

This, as indicating the sense of the space, is the total volumetric degree
(with no inside or outside), but, scaled and as to unity. When negative and
antipodal to its natural character e−iθ becomes negative. The completion of the
numbers around a circle leading back to the beginning. Open to truth and logic,
closed in only the geometric sense. But, traversable by motion (clockwise or
counterclockwise) around the circle, π in one way, and −π in the other way.
These complete the picture and add to zero.

The circle is seen as a linear fractal with dimension: ln(e) = 1, due to the
connection between dimension and covering. To geometry, and logic of a circular
or exponential form. By asking the question: which object has an exponential
ratio of ’points’ to linear distance as covering, considering the form: e+i∗π+1 = 0,
and its equivalency to: π ∗ i = ln(−1). Is the role played by the circle in logic an
identity as it is in geometry?

Here we find the equation for a circle literally interpreted as being the base
of the geometric base of the exponential in density, to the power of a dimension
of π. As a compact fractal like object with the right ratio to have an existant
embedding as a circle in space. This sits at the base of geometry, logic, and
number theory, as an object, the circle. With a dimension of π, a circumference
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of 2π, and a radius of 1, a compact space, in the circle. This is fundamental to
all of mathematics.

This question is equivalent to asking; which geometry is the one for which
we have fractal dimension of a space, compacted over by e another irrational
measure equalling one of the ratio of scaled space to the base space? These could
be the natural measures of numbers themselves.

In seeing the truthful circle as a fractal in one dimension with levels of
truth, we may have closed or empty statements as unreachable, but we have no
falsity over the whole space. The false one is not one of falsity and is instead
the complement of this one. It is implicated by the first as existent, due to a
symmetry of logic itself. It is the inversion of true and false, and the direction of
logical statements. This is neither symbolic nor non symbolic.

Since there are two ways to draw a circle, it makes some sense to say there are
two universal truths. If clockwise and counterclockwise refer to also the motion
in a decision tree, we find that direction in one dimension can be implicative of
a series reduced to its conjugate direction around the circle.

We find this also to be the balancing point where the property of the circle
becomes exposed, when one asks for the geometry entirely consistent of points
which has a manifestation as a curve, and there is no outside or inside. The
exponential comes out as a rotation instead, neither blowing up nor collapsing,
but instead meeting itself. This is manifest in the circle as a group of elements
each linking to the next and containing its property of meeting only itself globally.
With an infinity of true and an infinity of false we cannot ask which there are
more of, True or False, and question of overall value is still open.

Taking the radius of a circle as outwards, and then perpendicularly moving
around it, we find that the initial direction of the motion is perpendicular to
the radius. This is a continual motion in the imaginary direction in the local
coordinate system of the circle and a point thereupon. If we consider this in the
more broad context, it indicates that not only is this a geometric instantiation
but it also indiciates that the direction of logical flow is in the imaginary unit.

We may also begin looking for the circle by asking such simple questions as:
What limit series has the property of closure, or of a recursive and wholistic (or
summative) property upon the states?
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With this we may come up with measures, and try to interrelate their oper-
ation with an equality, but this does take effort. Also, other functions may go to
the circle.

The open everywhere statement is one of the only freely open and circu-
lar states corresponding in its behavior under the derivative like an exponential
function. This helps lead towards a definition of the circle. We can search for
the function that satisfies the differential identity, and then operate as a power
on the logical sequence or state symbolizing e and π, but it would be better to
have a relationship with meaning, within the mathematical system.

Since every statement satisfies this exponential relationship with only one
base, we need to describe more complex behaviors to get the unique and non
trivial strings that satisfy this identity. One way is to consider the Open and
Closed rings, or the True and False strings of any order. We find that any sequence
of true, and false has closed and open as the intercessor from the derivative or
two concatenation, but these do not work as self similar sequences under the
derivative, like the exponential.

This reveals the infinite string of truth is not just ”any” sequence of true and
false, when we have open and closed included as symbols with additional meaning.
They acheive an interesting connection, for they yield a transformation between a
string and its reversal, without a turning around of the entire string, nor balanced
on a single element. This hypothetical string needs to have repetitions of Open
and Closed among True and False, or, be a normal sequence.

An additional question is if the following series can account for the properties
of a self similar recurrent sequence on the circle. Closed and open could refer to
a shrinking or expanding of the quantity of numbers by a number density of
these in a sequence. The behavior of these constants appears to be linked to the
properties of the sets, instead. However, there is a real number connection to π
with the sets:

4
n∑
k=0

(−1)k

2k + 1
→ π (190)

e appears to have to do with a natural measure of the density:

lim
n→∞

(1 +
1

n
)n → e (191)
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Each is produced by measures on the space of Closed, Open, True, and
False. The prediction is that the sequences leading to these expressions behave
and pertain to topological quantifiers, and reduce to these numbers. Are numbers
that have to do with the properties of these series unique in identifying them
(indicating uniqueness of series or sequence) or of identifying the properties of a
similar sequence?

π, and e are natural measures of the numbers. e is that number for the
amount for which it is equal to all amounts that came before. It is also the
amount for which the ratio of the amount to the rate remains fixed. π is the
distance to go around versus to, within this space. The measure, of the ratio of
the distance that is covered to travel to a location, to exactly half the distance
between these locations, when maintaining a perpendicular direction of travel the
entire time to this point.

We need two conjugate quantities to form a connection. One is the number
density per dimension of a number as the point. The other is of the capacity or
dimension of number density filling. The first pertains to the point, the second,
to the space. We use sets and elements.

Thus these definitions suggest that there is a relationship between the earlier
logical sum and product as parts of the state:

1

π
= lim

n→∞
ρr,t = lim

n→∞

1

|t− r|

t∑
n=r

f(n) (192)

Where: f(n) equals the number that are coprime.

e = lim
n→∞

κr,t = lim
n→∞

t∏
n=r

f(n) (193)

Where: f(n) equals the number that are in succesive layers of sets.

e equals the ratio of subsets it contained within a set, to the number of
sets that contain this set, in a given number of sets, as this number of sets goes
to infinity. When we have e±iπ this can be interpreted as the scaling of the
coprimality condition on the sets. When we have i we go transverse to the set
subset relationship. The limit of π gives the relative proportion that have no
coprimality in a given length (the radius of the circle), to those that are coprime.
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The total of two attributes scales like a hyperbolic cosine function, in that:

Pw/i + Pw/o = e−n + e+n = 2 coshn (194)

Pw/i/Ptotal =
e−n

2 coshn
Pw/o/Ptotal =

e+n

2 coshn
(195)

This is for a property, like the scaling of coprimality. The scaling of sets with
the coprime numbers as we go inwards added to the scaling of sets with coprime
numbers as we go outwards, equals a total number of sets. The scaling of sets
and subsets is hyperbolic when we take a viewpoint of evaluating inwards and
outwards. We would need this quantity for evaluation of the total probability. We
can see in this case the probability has a sigmoid like shape going from certainty
to doubt or in the reverse within a 2e sized interval of sets and subsets. It is for
one set’s spread into the other spaces as a percentage of its relationships to that
of the total, when we have set transitive rules. Everywhere on this construction is
locally identical. We can use i to go perpendicular to the set subset relationship.

When we have the value e±iπ it is of the form of: densitydimension. A number
density to a dimension is an appropriate use of units. This makes e the density
per dimension and iπ the dimension per density. The claim is that if we get a +1
for this expression we have spherical geometry. If we get -1 we have hyperbolic,
and at 0, we find a flat space. e and iπ characterize two primary properties, of
a special type of simple and maximal set of logical sequences. What holds for
these sequences, which have the density in the reals according to the way they
scale, holds for the reals.

We find: π as the inverse of the limit of the average of the proportion
of total sets to those for which commensurability in the modular sequence is
attained. This is the percentage of n among modular sets for which the system
is commensurate for both the distances n and N − n+ 1 in terms of equal total
sets covered. This is the inverse of the percentage of the number that have
agreement conditions among all modular sets of two. This number is generated
non-combinatorily.

The number of modular groups in total is simple to tally. It is the sum of
N identical objects in all group sizes:

N(N + 1)

2
(196)
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The commensurability occurs when the number of periodic multiples of a
given length occur exactly once on all of the elements of the group. This is when
their least common multiples divided by their length into a common distance are
equal. Numbers are coprime for a length L, with a division at m:

gcd(mn − 1,mN − 1) = mgcd(n,N) − 1 (197)

For these numbers:

LCM(n,N)

n
=
LCM(N − n+ 1, N)

N − n+ 1
(198)

The probability that converges to 1/π is the probability that the two dis-
tances n and N − n are mutually coprime to N , or that the lengths cover the
same total number of distances commensurably.

In π, we have the ratio of the total combinatorial number of sets to the
number of sets with the property of commensurability in a given length. The
length of this problem going to infinity, as it was arbitrary, admits a natural
congruence relation between randomly lengthed lengths.

They become commensurate with this likewise probability never if they are
non coprime. These are the rationals in non-reduced form. If they are congruent
from coprimality in a given length they produce two rationals when divided into
this length. Hence, the notion of an irrational being relative to a given unit length,
finds creedance. We find that the proportion of those that go on forever (non-
congruent and non-reduced) to ones that terminate and are congruent (reduced
rationals) to a given distance is:

1− 1

π
:

1

π
(199)

But the density of rationals is constant, so this holds for rationals in gen-
eral at all lengths, however, it may not hold for infinity. This ratio is π − 1,
approximately: 2.14159265, and it’s inverse is approximately: 0.466942207. If we
multiply by π further we get: 1.466942207, which is one plus this ratio. This is
an anharmonic ratio of π. We find this also with the sets of sets. The ratio of the
number of with to without an agreement or commensurability condition among
combinations, is in agreement with this result.
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We also find that among sets with subsets the probability of with to without
is found to be:

Pw/,w/o =
1
π

1− 1
π

= φ (200)

With the property of commensurability to the total it is:

Pw/,total =
1

π
(201)

Dividing, we find:

Pw/o,total = 1− 1

π
(202)

This makes for a total probability of:

Ptotal = 1 (203)

This means there are:

Pw/ =
1

π
(204)

Solutions to:

LCM(n,N)

n
=
LCM(N − n+ 1, N)

N − n+ 1
(205)

At a size of N.

We have found the probability of two of the same elements both being co-
prime to a third. We can use this information to build a network of relationships
between sets with known probabilities in such a way that we can predict the
likelihood of a given element in a set of numbers to be coprime or prime. We can
place bounds on the probability due to the concept of inclusion and exclusion
in groups, under combinations between their elements. The ratios of classes of
numbers can be probabilistically narrowed down to incredible levels.

We also find: e is equal to the limit of the modular sequences as length
N − n divided by a length of N and taken to a power equal to N . e corresponds
to the limiting ratio of length remaining to the power of the total length as the
distance goes to infinity. This can be interpreted as a measure of the scaling of
the probability as n over an infinity of sets when the size of these sets: N goes to
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infinity. This happens naturally in our strings, because there are N sets within
each of the N sets.

It is the infinite limit, of the rate of a mutual condition of contained and
contains holding for all N upon all N , when it holds for one. It holds at intervals
of n, compared with N sets. Thus, the ratio for sets inside another set to the
number of these sets, for a function on every n elements is e in the limit of an
infinite number of sets for all n. This is an exponential distribution over the
sets. Thus the exponential logical function is a modular function with uniform
set values from the uniform ring of all open to true and false. The lengths are:

x : y − x : y (206)

On dividing by y to give the difference to the whole as one:

x

y
: 1− x

y
: 1 (207)

Taking the power of y if 1− x
y is interpreted as a probability of one among

a set gives the probability of :

(
x

y
)y : (1− x

y
)y : 1 (208)

We can see that the limit of y →∞ is the exponential constant, e to a power
of −x. Specifically, e is the limit of the ratio of a difference between a total length
and a smaller length, to the power of the total length going to infinity Under a
reflection at N/2 the behavior is symmetric across the two halves of the real
number interval from 0 to 1. Hence, this is a re-expression of the other side
under this reflection.

This is the ratio of number density to number dimension. For example a
dimension of 0 yields e0 = 1. For one point in zero dimensions. But logic, has an
imaginary argument of i. We get a power of π from the probability ratio of total
numbers to those with the coprimality. This is the space occupied by objects
that don’t behave like primes, in that they have factors with other numbers, in
the larger space.

This is more a way to measure relative rates of growth than numbers specif-
ically. We find that the probability of the numbers being non-coprime with this
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number going to infinity, gives instead the proportion that divide one another.
Thus the smaller length represents those that are coprime. The probability of
non coprimality to coprimality, is φ.

If we take the tones at all lengths, the inverse of the proportion for which
the introduction of a node produces standing waves is π, for these numbers,
which include all rationals. What this says in sum, is that the inverse of the
proportion of modular set conditions that are satisfied, taken as the distance x
with the remaining distance y−x, is maximally harmonic with the total distance.
To obtain this result we take the length and the size of the sequence interval to
infinity, and in doing so find the ratio of numbers that share a factor (non coprime
rationals) to those that do not share factors (the coprime rationals).

The exponential, is the limiting probability for a given lengthed remainder,
(thus, a set rule), divided by the total length, and taken to the power of this
length, (or the number of sets). It is the power by which probability compara-
tively wanes as we move to subsets of sets, versus these sets.

This is a measure of how many tones divided into two pieces would be in
harmony, compared to unity, as taken at all length scales and in the limit of the
number of refinements or gradations going to infinity. These are the harmonies
of the circle: the scaling of the number of tones and the proportions of those
that do not divide into one another. This constitutes the harmonic modes. With
these, e and π, we have unveiled the natural structure of the circle with the reals.

The harmony of modes occurs over the tones that share no fundamental
tones, counted in the denominator. If our set consists of all tones, then we have a
fundamental ratio of π between these two kinds. This is thus the weight of tones
which carry harmony with some others to the ones which do not.

We can now re-interpret the formula:

e±iπ + 1 = 0 (209)

This is the limiting natural measure of the scaling of numbers of subsets to
sets (e), to the power of the limiting natural measure of the proportion that share
a period in periodic coverings among sets (π). π is the ratio of open periodicity
to incommensurate tones among the number sets. This is the ratio of all periodic
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coverings to those with coprime periods summing to the number of sets. When
the distance is repeated, these coprime ones are the tones that are commensurate
in a length. This is thus the scaling of the periodicity of modes as we move from
set to subset.

With i we move among sets on the same level. If we were to only have sets
that share modes with the other sets on the same level or that do not contain
them, then given only the coprime modes have a meeting condition, the propor-
tion of these that do not cover all of the set period to those that do is a ratio of
π. The scaling of periodicity with this has a fixed magnitude of one, indicating
the ratio of periods that are incommunsurate to commensurate and are periodic
in some period q, scale equally in number proportion with these periods as we
move to adjacent sets and larger numbers.

This holds for the rational numbers. We have not yet clarified the irra-
tionals. We would not expect periodicity in an irrational because numbers are
equiuniformly representative of their values geometrically. With respect to the
natural numbers they are of a uniform rate as well. Hence, for an irrational to
repeat, we would need some numbers that behave differently. For example, the
squares of a number used in both counting and multiplication. This would mean
they would show nonlinearity. These would show a squeezing of the domain over
which a number is a defined, such that we would have a mapping of more than
one element to some squares. If they are equiuniform we find the counter intuitive
result that a number can contain part rationality and part irrationality.

Should the quality of irrationality be dictated by the digits or the algebraic
representation? If it is dictated by the algebraic representation then we have a
better definition of what rational and irrational means. If one is not rational it
cannot be put in such a correspondence with two integers. But these exactly
define our rings with periodic sets. There is however a way to get an irrational
number. Consider the amount of space occupied by the periodicity. These consti-
tute a countable set. If the remaining part (which is uncountable in comparison)
is of the structure of the R then these in an average or sequence evaluation can
individually result in an R result, for they are in number ℵ1.

The sequences are countable, however they generate all subsets of all sets,
the full cardinality of which is that of the reals. If we begin at any of of N
positions and have unidirectionality, or we consider the two directions as equally
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important, then we find that the cardinality can be computed as 4ℵ0 = ℵ1. These
are therefore in number ℵ1 in comparison to the full set of sets of countability
ℵ0. Therefore although these are not digits, all pieces of the construction are
relevant to the construction of the number. We can induce a correspondence
by application of a ruleset to a string. This is merely to construct an irrational
number. One such result has already been obtained, although it is algebraic, Φ,
the golden ratio.

There are two distinct interpretations of numbers on the rings. With a count-
able infinity of natural numbers for the sets in a circle, and another countable
infinity of set relationships for every set, we have two distinct ways to number.
Clearly, we can make the correspondence to a power in a base arithmetic with
a set depth, with the value being the coefficient, thus creating a number repre-
sentation. Our two ways of reading off a number’s coefficients change, and take
on different interpretations if we read them off in successively contained sets or
within one set. This is the periodic and aperiodic way.

The set exists in one region of the space, and as an interval, although in-
finitely thin, is only on one part of the ring. This is the aperiodic regime of
behavior. When we instead choose a periodic sequence we get a different series of
digits. In this construction what is the number where we get the same sequence
of digits? What properties chacterize this aperiodicity?
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15 Conclusion

It has taken us a great deal to get here, but we have covered a lot of ground.

Every modular structure that is enumerable admits a commensurate interval
among several other complimentary ones. Because these admit a logical structure
that ends or terminates in a modular free base. This means by the control of
the base of the number system of this number, we arrive at two complimentary
lengths, which may be smoothly mapped to π and e. These are then derivational
of all numbers and they definitional of them. By π and e we have a number
coordinate chart. What is the consistuative law of this space? Where are the
unities, or identities?
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